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ABSTRACT: The layered material MoS2 has significant potential as a cathode
material for hybrid Mg2+/Li+ batteries (MLIBs) due to its fast two-dimensional
ion diffusion channel. However, the low capacity and poor cycling stability limit
the practical application of MoS2. Herein, highly dispersed MoS2 nanoflowers with
a large Brunauer−Emmett−Teller (BET) area of 118.25 m2 g−1 and a large lattice
spacing of 0.65 nm are synthesized by a one-step hydrothermal method. The
obtained MoS2 nanoflowers deliver a remarkable reversible capacity of 321 mA h
g−1 at 0.1 A g−1. Notably, it displays an impressive cycling stability with a
reversible capacity of 103 mA h g−1 over 600 consecutive cycles at 1 A g−1. The
favorable electrochemical properties of the MoS2 are attributed to the large BET
area and increased lattice spacing that are more conducive to the full contact
between the electrolyte and the material, thus promoting the diffusion of ions and
improving the reaction kinetics. The results of the present study offer an idea to
prepare highly dispersed MoS2 with enhanced capacity and durability.
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1. INTRODUCTION

Lithium-ion batteries (LIBs) have attracted wide attention due
to its high gravimetric energy density, high theoretical capacity,
and long-term cycling durability.1−3 However, the shortage of
lithium resources and the defect of lithium dendrite growth on
the anode surface restrict its practical applications.4,5

Considering this case, magnesium-ion batteries (MIBs) have
aroused wide interest due to the resource abundance and
dendrite-free growth on the magnesium anode.6 Besides, MIBs
have a volumetric capacity of 3833 mA h cm−3 and a
gravimetric capacity of 2205 mA h g−1 as Mg2+ transfers more
electrons.7,8 However, some grand challenges need to be
overcome in order to promote the development of MIBs.9 The
slow diffusion kinetics can lead to a high polarization during
charge−discharge processes.10 To resolve this obstacle, MLIBs
with a dual salt electrolyte were designed.11 The system of
hybrid battery comprises the Mg metal as the anode, Mg2+/Li+

dual salt as the electrolyte, and intercalated materials as
cathodes, which can not only take full advantage of the merit of
dendrite-free Mg anode, but also realize the rapid kinetic of Li+

in the cathode materials.12,13 To date, most reported MLIBs
are Daniell-type cells, where only Li+ is de-intercalated/
intercalated from the cathode materials during charge−
discharge process, and the energy density of the battery
inevitably depends on the lithium salt solubility in the
electrolyte.14−17 However, the solubility of lithium salt in the
solvent limits the energy density of MLBs in practice.6 If the

cathode materials can accommodate both Li+ and Mg2+, the
MLIBs will avoid the disadvantages of Daniell-type cells and
display a high energy density.18 Therefore, it is necessary to
search for suitable cathode materials to accommodate Mg2+/
Li+.
MX2 (M = Ti, V, Mo, and W; X = S and Se) have been

considered as promising cathode materials for MIBs because
they can greatly improve the transport of Mg2+ through the
unique two-dimensional structure.19−22 Molybdenum disulfide
(MoS2), as one typical member of the most classical transition-
metal dichalcogenides, has attracted wide concern as the
cathode of MLIBs.23,24 Although bulk MoS2 is not conducive
to Mg2+ intercalation, the exfoliated MoS2 is more favorable to
the diffusion and storage of Mg2+.25,26 For example, Chang’s
group reported the Li intercalation-exfoliated MoS2, which
optimized the microstructure of MoS2 for easier intercalation
of various ions.5 Furthermore, Jiao and co-workers prepared
exfoliated three-dimensional (3D) porous MoS2 and enlarged
the interlayer spacing by intercalating graphene into MoS2.
The flexible electrode showed an initial specific capacity of
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115.9 mA h g−1 at 0.1 A g−1 and high reversible specific
capacity of 82.5 mA h g−1 over 50 cycles, which is largely
improved compared with bulk MoS2.

27 Although there are
many reports on the synthesis of dispersed MoS2, such as
mechanical exfoliation,28 electrochemical exfoliation,27 and
liquid exfoliation,29 these methods normally involve compli-
cated synthesis steps or are time- and energy-consuming.
Therefore, seeking a simple method to synthesize highly
dispersed nano-MoS2 is of great significance for its application.
In this work, nanostructured MoS2 with different dispersion

degrees was synthesized using hydrochloric acid to control the
concentration of sulfur ions in the solution. When the pH of
the solution was adjusted to 0.9, the highly dispersed MoS2
nanoflowers with a large Brunauer−Emmett−Teller (BET)
area of 118.25 m2 g−1 and large lattice spacing of 0.65 nm are
obtained. The dispersed morphology and increased lattice
spacing are more conducive to the full contact between
electrolyte and material and shorten the ion diffusion path
distance in the electrode, which promotes the diffusion of ions
and improves the reaction kinetics. As a result, the MoS2
delivers high initial discharge capacities (321.9 and 200.6 mA h
g−1 at 0.1 and 1 A g−1, respectively) and excellent cycling
performance (192.8 mA h g−1 over 100 consecutive cycles at
0.1 A g−1 and 102.8 mA h g−1 over 600 consecutive cycles at 1
A g−1, respectively).

2. EXPERIMENTAL SECTION
2.1. Synthesis of MoS2. The raw materials used in the

experiment were all analytically pure and were used without further
purification. The MoS2 with different morphologies were synthesized
by a one-step hydrothermal reaction using ammonium molybdate
tetrahydrate (H24Mo7N6O24·4H2O) and thiourea (CH4N2S) as raw
materials, and hydrochloric acid (HCl) was used as a pH regulator of
the solution. In a typical synthesis, 1 mM (1.2359 g) H24Mo7N6O24·
4H2O and 15 mM (1.1989 g) CH4N2S were dissolved in a 60 mL
solution with the pH of 7. After stirring for 30 min, it was transferred
into a 100 mL Teflon-lined stainless autoclave and kept at 220 °C for
18 h. Then, the obtained product needs to be centrifuged three times
with ethanol and deionized water, and the A-MoS2 sample could be
obtained after drying in vacuum kept at 60 °C for 12 h. B-MoS2, C-
MoS2, and D-MoS2 were fabricated when the pH of the solution was
4, 0.9, and 0.6, respectively.
2.2. Materials Characterizations. The as-prepared materials

were tested by X-ray diffraction (XRD, Rigaku D/max 2000
diffractometer). The chemical state and element valence of the C-
MoS2 were measured by X-ray photoelectron spectroscopy (XPS,
Thermo Scientific K-Alpha+). The morphology was obtained by field-
emission scanning electron microscopy (FE-SEM-4800-1, Japan). The
microstructure analysis [(transmission electron microscopy (TEM),
high-resolution TEM (HR-TEM), and selected area electron
diffraction (SAED)] was carried out on the Thermo Fischer Talos
F200x. The specific surface area of MoS2 was recorded by the BET
(Tristar II 3020 Version 3.02). Raman spectra of MoS2 were
characterized by the excitation wavelength of 532 nm (XploRA,
France).
2.3. Electrochemical Measurements. The electrochemical

performance of MoS2 was characterized by using CR2032 coin
cells. The active materials (70 wt %), conductive agent (20 wt %), and
binder (10 wt %) were mixed to make a homogeneous slurry. The
slurry was coated on stainless steel. The working electrode was
obtained after drying at 80 °C for 12 h. The counter electrode and
separator are magnesium metal and glass fiber, respectively. The APC
electrolyte was synthesized using the method reported by Oren
Mizrahi et al.30 0.25 M aluminum chloride (AlCl3) was added to 7.5
mL of tetrahydrofuran to form a mixed solution, and then 2.5 mL of
phenyl magnesium chloride (MgPhCl) was added. It was magnetically
stirred for 24 h, and then lithium chloride (LiCl) of 0.01 M was added

and stirred for 24 h to form the 1 M LiCl/0.25 M APC electrolyte.
The whole process was carried out in a glovebox filled with argon gas.
The galvanostatic charge and discharge (GCD) test was carried out
on the NETWARE BTS-5 V battery test system. Cyclic voltammetry
(CV) was carried out on the electrochemical workstation at a
scanning rate of 0.1 mV s−1. The electrochemical impedance
spectroscopy (EIS) test (frequency from 10−2 to 105 Hz with voltage
amplitude 5 mV) was conducted with an electrochemical workstation.

3. RESULTS AND DISCUSSION
The major steps involved in the synthesis are presented in
Figure 1a. The chemical reaction equation of MoS2 can be
described as follows:31,32

+ → + +− +CH N S H O S CH N H4 2 2
2

2 2 (1)

+ → +− − −MoO S MoS SO4
2 2

2 4
2

(2)

+ ↔+ − −H S HS2 (3)

+ ↔− +HS H H S2 (4)

As shown in formulas 1 and 2, CH4N2S hydrolyzes in
solution to produce S2− and MoS2 is synthesized by the
reaction of S2− and MoO4

2−. The formulas 3 and 4 indicate
that sulfur ions are consumed by electrolysis in the solution.
The sulfur concentration is the key parameter that controls the
prospects of the material growth.33

When the concentration of H+ was increased, the
concentration of S2− would also change, thus affecting the
morphologies of MoS2. Figure 1b−e shows the variations in
MoS2 by adjusting the pH value of the solution. As shown in
Figure 1b and c, A-MoS2 and B-MoS2 show that the bulk
structure is composed of nanosheets. For C-MoS2, a unique
nanoflower structure formed with highly dispersed nanosheets
is observed as shown in Figure 1d. D-MoS2 (Figure 1e) is also
composed of nanosheets but tends to aggregate (Figure 1d).
Clearly, MoS2 nanosheets with different dispersion degrees can
be synthesized by controlling the concentration of S2− to affect
the synthesis rate of MoS2. The unique structure of highly
dispersed nanosheets for C-MoS2 is more conducive to the full
contact between electrolyte and material and shortens the ion
diffusion path distance in the electrode, which promotes the
diffusion of ions and improves the reaction kinetics.
The as-prepared MoS2 was characterized by XRD (Figure

2a). All diffraction peaks of the as-prepared MoS2 index
accurately to the MoS2 with hexagonal structure (PDF#75-
1539). Compared with the A-MoS2, however, the peaks of B-
MoS2/C-MoS2/D-MoS2 at the (002) plane shift to a low angle.
For example, the diffraction peaks of A-MoS2 and C-MoS2 at
the (002) plane are observed around 14.3 and 13.7°,
respectively. The shift of the diffraction peak indicates an
increased interlay distance from 0.62 nm (A-MoS2) to 0.65 nm
(C-MoS2), according to Bragg’s formula.26 The increase in
lattice spacing should be ascribed to the intercalation of NH4

+

and the formation of lattice oxygen in the MoS2 layers during
the hydrothermal process.34,35 The Raman spectra in Figure 2b
further present the structure of A-MoS2 and C-MoS2, in which
the characteristic peaks observed around 380.2/382.1 and
406.7/406.6 cm−1 are corresponding to E2g

1 and A1g Raman
modes, respectively. The phenomenon of the peak shift is
mainly attributed to the fact that the interlayer expansion
results in a decrease in the interlaminar van der Waals force,
which leads to a stronger out-of-plane vibration.36,37 Figure 2c
shows the N2 adsorption/desorption isotherm of the as-
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prepared MoS2 materials. A-MoS2, B-MoS2, and D-MoS2
possess a BET area of 13.27, 18.75, and 102.32 m2 g−1,
respectively, while the C-MoS2 possesses a larger BET area of
118.25 m2 g−1. It can be seen that there are more abundant
interconnected nanostructures in C-MoS2. XPS was used to
investigate the chemical states of Mo and S in the samples with
the C-MoS2, as shown in Figures 2d,e and S1, which indicates
the presence of C, O, Mo, and S elements. Figure 2d shows
that there are three main characteristic peaks in the spectra of
Mo 3d. The peak with a binding energy of 226.9 eV belongs to
S 2s, and the other two peaks with binding energies of 229.8
and 233.0 eV are indexed to Mo 3d5/2 and Mo 3d3/2 of Mo4+,
respectively.38 The characteristic peaks of 162.6 and 163.8 eV
displayed in Figure 2e are indexed to S 2P3/2 and S 2P1/2,
respectively.39

The TEM images of A-MoS2 show that the material is
seriously stacked (Figure 2f), whereas C-MoS2 has the feature
of thin nanosheets in Figure 2g. The highly dispersed
morphology of C-MoS2 affirmed by TEM fits well with the
results of SEM and BET. The abovementioned results indicate
that by controlling the pH, two-dimensional MoS2 nanosheets
with the larger BET area were successfully synthesized. The
HR-TEM images reveal that the interlayer spacing of A-MoS2
is 0.62 nm, whereas the interlayer distance of C-MoS2 expands
to 0.65 nm (Figure 2h and i), consistent with the XRD results.
The uniform distribution of Mo, S, and O elements in the
materials could be seen from SEM energy-dispersive mapping
images (Figure S2). The presence of the O element evidences
the formation of lattice oxygen in the sample.34,35 The SAED
pattern demonstrates the polycrystalline structure for the C-
MoS2 material (Figure S3). Clearly, the C-MoS2 material with
a larger exposed surface area and interlayer spacing is beneficial
to the full contact between electrolyte and material.
The CR2032-type coin cells were assembled to evaluate the

electrochemical performance. The redox peaks of the initial
three CV curves of C-MoS2 are around 1.2 and 0.6 V,
corresponding to the Mg2+/Li+ extraction and insertion
behavior (Figure 3a). At current densities of 0.1, 0.5, 1, 2, 5,
and 10 A g−1, the C-MoS2 electrode possesses high reversible
capacities of 321.2, 218.9, 169.2, 137.3, 105.6, and 80.6 mA h
g−1 (Figure 3b and c). For comparison, A-MoS2 shows
reversible capacities of 261.3, 149.8, 121.4, 93.9, 51.4, and 19.4
mA h g−1. Obviously, the C-MoS2 electrode displays
impressive rate performance and higher reversible capacities.
The B-MoS2 and D-MoS2 electrodes also achieve superior rate
ability compared to the A-MoS2 electrode, indicating that the
high dispersion and expanded lattice spacing dominate the
electrochemical performance of the MoS2 electrode (Figure
S4).
The cycle stability of MoS2 was tested. The C-MoS2 and A-

MoS2 electrodes deliver initial specific capacities of 321.9 and
245.9 mA h g−1 at 0.1A g−1 (Figure 3d). C-MoS2 can maintain
a specific capacity of 192.8 mA h g−1 after 100 cycles, while the
capacity of A-MoS2 decays to 128.1 mA h g−1. Similarly, the
discharge capacity of B-MoS2/D-MoS2 is also higher than that
of A-MoS2 (Figure S5), giving the same tendency as observed
in rate performance. Figure S6 shows the GCD data of A-MoS2
and C-MoS2 cathodes at 0.1 A g−1. The long cycling
performance of A-MoS2 and C-MoS2 at 1 A g−1 is measured
as shown in Figure 3e. It presents that the capacity of A-MoS2
decreased to 70.1 mA h g−1 over 600 cycles, which shows poor
reversible stability. As for C-MoS2, the reversible capacity is
103 mA h g−1 over 600 cycles, showing excellent stability. We
test the electrochemical performance of MoS2 nanoflowers in
pure Li+ electrolyte and pure Mg2+ electrolyte and compare it
with the properties in the Mg2+/Li+ electrolyte. The Mg2+/Li+,
pure Li+, and pure Mg2+ electrolytes deliver initial discharge
capacities of 321.9, 30.5, and 39.3 mA h g−1, respectively. The
Mg2+/Li+ electrolyte can maintain a specific capacity of 244.25
mA h g−1 over 20 cycles, while that of pure Li+ and pure Mg2+

electrolyte decays to 11.2 and 36.9 mA h g−1. The favorable
cycle performance can be obtained in the Mg2+/Li+ electrolyte
(Figure S7). In addition, the cycle performance of the MoS2
host reported in the literatures was collected and compared
with C-MoS2 (Table S1). Clearly, C-MoS2 as the cathode
material for MLBs shows a better electrochemical perform-
ance. The high capacity of the C-MoS2 derives from the large
BET area and large lattice spacing, which are conducive to the

Figure 1. (a) Schematic illustration of the synthesis process of MoS2.
SEM images of (b) A-MoS2, (c) B-MoS2, (d) C-MoS2, and (e) D-
MoS2.
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Figure 2. (a) XRD patterns of the as-prepared MoS2 materials (the inset in the image shows the 12−18° range of MoS2 materials). (b) Raman
spectra of A-MoS2 and C-MoS2. (c) Nitrogen adsorption/desorption isotherm of the as-prepared MoS2. XPS spectra of the C-MoS2: (d) Mo 3d
and (e) S 2p. (f, g) TEM and (h, i) HR-TEM images of A-MoS2 and C-MoS2.

Figure 3. (a) CV profiles at 0.1 mV s−1 of C-MoS2. (b) Rate capability at 0.1−10 A g−1 of A-MoS2 and C-MoS2. (c) Galvanotactic charge/
discharge curves of C-MoS2 batteries at various current densities. (d) Cycling performances of A-MoS2 and C-MoS2 at 0.1 A g −1. (e) Long-term
cycling stability at 1 A g−1 of A-MoS2 and C-MoS2. (f) Nyquist plots of A-MoS2 and C-MoS2.
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full contact between electrolyte and the material, and shortens
the ion diffusion path distance in the electrode. In addition,
EIS during the first cycling is carried out to investigate the
reaction kinetics of C-MoS2 and A-MoS2, and the correspond-
ing Nyquist plots are given in Figure 3f. The Nyquist plots
consist of a semicircle at high frequencies and a slash at low
frequencies. The semicircle corresponds to charge transfer
resistance (Rct), and the slash represents the Warburg
impedance (Zw) related to the Mg-Li ion diffusion.40 We
have fitted the Nyquist plots, and Figure S8 shows the
equivalent circuit diagram. The Rct values of C-MoS2 and A-
MoS2 are 64.5 and 324.3 Ω, respectively, indicating that C-
MoS2 possesses much lower charge transfer resistance.
To evaluate the effect of interlayer distance and morphology

on the diffusivity of ions in MoS2, the galvanostatic
intermittent titration technique (GITT) was employed to
probe the diffusivity of ions.41 Figure 4a and b shows the GITT
curves of A-MoS2 and C-MoS2. The ion diffusivity DGITT can
be obtained via the formula:42,43

πτ
=

Δ
Δ

i
k
jjjjj

y
{
zzzzz

i
k
jjjjj

y
{
zzzzzD

m V
M S

E
E

4
GITT

B M

B

2
s

t

2

(5)

where τ, mB, MB, VM, S, ΔEt, and ΔEs correspond to the
relaxation time, the mass of active material, molar weight,
molar volume, geometric area of the electrode, potential
change caused by pulse and constant current charging/
discharge, respectively. The calculated diffusion coefficient
values of the C-MoS2 are higher than that of A-MoS2 (Figure
4c and d), which can be ascribed to the larger layer spacing and
the dispersed two-dimensional MoS2 nanosheets with a larger
BET area, which are more conducive to ion transport. To learn
the energy storage mechanism of the C-MoS2 cathode in
MLBs, ex situ XPS and ex situ XRD were carried out. Figure
S9a and b shows the ex situ XPS spectra of the C-MoS2
cathode measured at discharge and charge stages. When
discharged to 0.1 V, the characteristic peaks of Li 1s and Mg 2p
would appear. The characteristic peaks of Li 1s and Mg 2p
would disappear and weaken after charging to 2.0 V. Figure 4f
displays the ex situ XRD patterns of C-MoS2 at different
discharge/charge stages during the first cycle (marked points

Figure 4. (a, b) GITT curves of A-MoS2 and C-MoS2 electrodes. (c, d) Mg2+ diffusion coefficient of A-MoS2 and C-MoS2 electrodes calculated via
GITT curves in the discharged/charged state. (e) Galvanostatic charge and discharge curve of the C-MoS2 cathode at the second cycle. (f) Ex situ
XRD patterns of the C-MoS2 electrode during the first cycle.
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in Figure 4e). The pristine peak of the (002) plane for the as-
prepared C-MoS2 material is 13.65°. When discharged to 0.1
V, the characteristic peak locked at around 13.43°, which
demonstrates that the (002) lattice plane gradually shifts
because of the Mg2+/Li+ insertion. When charged to 2.0 V, the
peak of the (002) plane would reversibly recover to 13.65° due
to the Mg2+/Li+ extraction. The reversible intercalation/de-
intercalation of Mg2+/Li+ is indicated by the abovementioned
results. The schematic illustration of the working mechanism
for MLBs is shown in Figure S10. Mg2+ are dissolved from the
Mg anode into the electrolyte, and Mg2+/Li+ are inserted into
the MoS2 electrode during the discharging process. Because
the diffusion ability of lithium ions is several orders of
magnitude stronger than that of magnesium ions, the diffusion
of lithium ions is very important in the intercalation process of
the cathode.44 Mg2+ would be deposited on the magnesium
anode before lithium ions because magnesium has higher
thermodynamic redox potential during the charging process.45

The evolution of surface morphologies for the A-MoS2 and
C-MoS2 electrodes is observed to understand the reasons for
the improvement of electrochemical stability. Figure 5a and b
shows the surface morphologies of the fresh A-MoS2 and C-
MoS2 electrodes, respectively. Figure 5c shows the morphology
of fine particles for the A-MoS2 electrode after 50 cycles,
presenting that the material is crushed during the cycle process
and thus exhibits very poor cyclic stability. Alternatively, the
morphology of nanosheets for the C-MoS2 electrode after 50

cycles is well maintained during the cycle process (Figure 5d)
that guarantees the better cyclic stability due to its unique
structure and morphology. By analyzing BET, TEM, and SEM
data, it can be seen that the high dispersed nanoflowers
significantly improved the structure stability of MoS2. The bulk
A-MoS2 composed of nanosheets is not conducive to relieving
the volume expansion during the cycle, thus resulting in the
crushing of the structure (Figure 5e). In contrast, the highly
dispersed MoS2 nanoflowers with a large BET area and lattice
spacing are more conducive to the full contact between
electrolyte and material and thus sustain its structure after
long-term cycling (Figure 5f). The high capacity of the C-
MoS2 derives from the large BET area and large lattice spacing,
which improves the diffusion of intercalated Mg2+/Li+, and
thus the material displays an improved electrochemical
performance.

4. CONCLUSIONS
In conclusion, highly dispersed MoS2 nanoflowers were
successfully synthesized by using hydrochloric acid to control
the concentration of sulfur ions in the solution. The obtained
MoS2 presents a unique structure with a large BET area of
118.25 m2 g−1 and large lattice spacing of 0.65 nm, enabling
this material to exhibit high capacity, good rate performance,
and stable cycling as cathode material for hybrid Mg2+/Li+

batteries. Benefiting from the unique structure, the reversible
capacity of 192.8 mA h g−1 over 100 cycles at 0.1 A g−1 was

Figure 5. SEM images of A-MoS2 and C-MoS2 electrodes in different states. (a, b) Fresh A-MoS2 and C-MoS2 electrodes. (c, d) A-MoS2 and C-
MoS2 electrodes after 50 cycles. Structure evolution scheme of (e) A-MoS2 and (f) C-MoS2 during the cycling process.
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obtained. The present study not only furnishes a promising
cathode material for MLIBs, but also underlines a guide to
fabricate highly dispersed MoS2 materials for other applica-
tions.
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