Contents lists available at ScienceDirect

Journal of Materials Science & Technology

journal homepage: www.jmst.org

Research Article The effect of various cations/anions for MgH₂ hydrolysis reaction

Chongyang Yuan^a, Wei Chen^a, Zunxian Yang^{b,*}, Zhenguo Huang^c, Xuebin Yu^{a,*}

^a Department of Materials Science, Fudan University, Shanghai, 200433, China

^b National and Local United Engineering Laboratory of Flat Panel Display Technology, Fuzhou University, Fuzhou, 350002, Fujian, China

^c School of Civil & Environmental Engineering, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia

A R T I C L E I N F O

Article history: Received 6 July 2020 Received in revised form 27 July 2020 Accepted 28 July 2020 Available online 30 September 2020

Keywords: MgH₂ Hydrolysis reaction Cations Anions Hydrogen generation

ABSTRACT

MgH₂ is regarded as a potential hydrolysis material for the hydrogen generation due to its high theoretical hydrogen yield, abundant source on earth and environmentally friendly hydrolysates. However, the quickly formed passive magnesium hydroxide layer on the surface of MgH₂ will hinder its further hydrolysis reaction, leading to sluggish reaction kinetics and low H₂ yield. In this paper, we explore the improvement of different anions and cations in solutions for the hydrolysis of MgH₂. It is found that the cations in the solution promote the reaction rate of MgH₂ hydrolysis through the hydrolysate-induced growth effect, among which the fastest hydrogen yield can get 1664 mL/g within a few minutes in the Fe₂(SO₄)₃ solution. As for the anions, it enables different microstructures of the Mg(OH)₂ hydrolysate which give rise to enhanced water utilization. Specially, for the mixed 0.5 M MgCl₂ + 0.05 M MgSO₄ solution, the water utilization rate attains the optimum value of 51.3 %, much higher than that of the single MgCl₂ or MgSO₄ solutions. These findings are of great significance for the application of MgH₂ hydrolysis as hydrogen generation.

© 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

1. Introduction

To improve the ecological environment resulted from the consumption of fossil energy, new clean energy needs to be developed and implemented. Hydrogen, with the advantages of high energy density (142 MJ/kg), benign environmental compatibility, and abundant resources, is the most promising energy carrier for replacing traditional fossil fuels [1–3]. So far, it has contained great challenges for mass production, storage and controlled distribution of hydrogen which could be the critical part of the pursuit for the hydrogen economy [4].

Compared to traditional hydrogen storage methods, such as compressed gaseous hydrogen and low-temperature liquid hydrogen, solid hydrogen storage shows the advantages of high hydrogen storage volume density, high safety, low cost and so forth [5–7]. Among the solid hydrogen storage materials, MgH₂ holds the promise as an energy carrier medium due to its non-toxicity, high hydrogen content (7.6 wt.%) and low price [8,9]. What's more, because of its strong reducibility when MgH₂ reacts with water at room temperature, it will undergo a chemical reaction as shown

* Corresponding authors. E-mail addresses: yzx@fzu.edu.cn (Z. Yang), yuxuebin@fudan.edu.cn (X. Yu). in formula (1) and the hydrogen yield can reach to 15.2 wt. % if the weight of water is not calculated, which makes it especially suitable for the fuel cell in supplying hydrogen [10–14].

$$MgH_2 + 2H_2O = Mg(OH)_2 + 2H_2 \uparrow \triangle H = -277 \text{ kJ/mol}$$
(1)

However, Mg(OH)₂, which is low solubility in water, is the byproduct of MgH₂ hydrolysis and it is usually formed on the surface of MgH₂. The passive Mg(OH)₂ layer will hinder the further contact of water with fresh MgH₂ and thus leading to sluggish hydrolysis kinetics [14,15]. A number of approaches have been proposed to solve this problem by modifying the MgH₂, involving in alloying [16,17], designing nanostructure [18–20], ball-milling with other metal hydrides [21], oxides [22], carbon additives [22], chlorides [23] or other chemicals [24]. These methods can improve hydrogen yield and hydrolysis kinetics to a certain extent.

Furthermore, changing the component of aqueous solution is another easy-operated and efficient way to promote the hydrolysis process of MgH₂. Gan et al. [25] found that a hydrogen generation of 1487 mL/g in 10 min at 303 K was achieved for the MgH₂ powder in 0.5 mol/L AlCl₃ solution. In addition, ammonium salts have been applied in MgH₂ hydrolysis. Huang et al. [26] reported that hydrogen generation via MgH₂ hydrolysis in 4.50 wt. % NH₄Cl solution produced 1604 mL/g hydrogen in 10 min at 333 K. Chen et al. [15] combined MgH₂ nanoparticles and MgCl₂ solution to promote the hydrolysis process of MgH₂ and discovered near-theoretically

https://doi.org/10.1016/j.jmst.2020.09.036

1005-0302/© 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.

1820 mL/g of H₂ released within 20 min in 1 mol/L MgCl₂ solution. Sevastyanova et al. [27] adopted mixed solutions of magnesium chloride with aqueous ammonium, copper or potassium chlorides to accelerate the MgH₂ hydrolysis process and observed the highest reaction rate yielding of 100 % hydrogen releasing in 120 min in mixed 0.45 mol/L MgCl₂ and 0.85 mol/L NH₄Cl solutions. Clearly, the promoted hydrolysis process of MgH₂ in above studies is attributed to the addition of various salts. It has been proposed by Zheng et al. that the cations of the chlorides play a critical role in the hydrolysis reaction and the cations with higher OH⁻ affinity are more effective for facilitating the hydrolytic reaction [28]. As for the effect of anions in the reaction, however, there has never been reported yet.

In this work, we first demonstrate that excellent H_2 generation can be achieved by reaction of MgH₂ powder with several chloride and sulfate solutions without any activation procedure, and the role of cations/anions on the improvement of MgH₂ hydrolysis is discussed. And then we put forward the concept of water utilization rate, which means the ratio of measured hydrogen production to theoretical hydrogen production of the total employed water in the MgH₂ hydrolysis reaction. Our results indicate that the mixture of MgCl₂ and MgSO₄ solution can obtain higher water utilization than that of separate MgCl₂ and MgSO₄ solutions. This study lays the foundation for the practical application of MgH₂ hydrolysis.

2. Experimental

2.1. Materials and characterizations

MgH₂ powder (Shanghai Magnesium Power, 99.0 %, 500 mesh, XRD patterns are shown in Fig. S1 in supplementary material), MgCl₂·6H₂O, CuCl₂·4H₂O, ZnCl₂, FeCl₃·6H₂O, MgSO₄·7H₂O, CuSO₄·5H₂O, ZnSO₄·7H₂O, Mg(NO₃)₂·6H₂O (Shanghai Hushi, AR) and Fe₂(SO₄)₃, Mg(CH₃COO)₂·4H₂O (Macklin, 99.0 %) and Mg(ClO₄)₂·6H₂O (Aladdin, 99.99%) were used as received commercially.

X-ray diffraction (XRD) patterns are collected using the CuK α line at a scan rate of 10° min⁻¹ (Rigaku D/max 2000 diffractometer). Scanning electron microscopy (SEM) images are collected with acceleration voltage of 1 kV (Hitachi S4800).

2.2. Hydrogen generation test

The hydrogen generation test system is showed in Fig. 1. The hydrolysis was carried at a 100 ml three-necked flask: one sealed with a rubber stopper, one for solution injection and MgH₂ powder addition, the last one for the hydrogen collection and recording. For the measurement of H₂ yield, various solution (20 mL, 0.5 mol/L, hereinafter abbreviated as "M") was loaded in the flask and was kept at a certain temperature by a water bath. MgH₂ powder (0.1 g) was added into the solution under moderate stirring and the system was rapidly sealed. The generated hydrogen passes through a drier to remove the water vapor, and the volume of H₂ was recorded

by a flowmeter (Ritter MGC-1 V3.4 PMMA) connected with a computer. The rubber tubes were used to connect the flask, the drier and the flowmeter. The hydrogen is exhausted to the outside to ensure safety.

It is common that the amount of H_2O is far exceeding for MgH_2 hydrolytic reaction and the H_2O utilization is low which leads to a decreased hydrogen capacity in the whole MgH_2/H_2O system. In this situation, we used the term H_2O utilization rate to describe the hydrogen capacity of the whole MgH_2/H_2O system. The H_2O utilization rate is the ratio of experimentally measured hydrogen yield to stoichiometric hydrogen yield of the total employed water in the MgH_2 hydrolysis reaction. Thus, the higher H_2O utilization rate means the higher system hydrogen capacity. For the measurement of H_2O utilization rate, 0.4 g MgH_2 powder was added in batches into 10 mL solution until the hydrogen evolution of the entire system stopped, and the data of the released H_2 was used to calculate the H_2O utilization rate.

After hydrolysis reaction, the precipitates were centrifuged and washed with water and ethanol three times and dried at 60 $^\circ$ C via dynamic vacuum on a Schlenk line.

3. Results and discussion

3.1. The influence of cations in MgH₂ hydrolysis

Fig. 2 shows the hydrogen generation of MgH₂ hydrolysis in different chloride and sulfate solutions with the same volume and concentration. It is obviously that the total amount of H₂ yield and the H₂ release rate have been improved greatly due to the existence of chloride/sulfate compared with the MgH₂ hydrolysis in pure water, for which only 5.0 % (94.0 mL/g) theoretical H₂ is released after 2 h. The slow reaction kinetics in the case of MgH₂/pure water is caused by the formation of passivated $Mg(OH)_2$ layer on the surface of the MgH₂ particles as previous reports [29]. In Fig. 2(a), it can be clearly seen that the FeCl₃ solution shows the highest reaction rate, releasing 1632.0 mL/g H₂ in 6.2 min. CuCl₂ also delivers a good activity and releases 810.3 mL/g H₂ in 20 min, while the H₂ generation for ZnCl₂ and MgCl₂ solutions is 561.2 mL/g and 491.4 mL/g, respectively. The H₂ generation data from MgH₂ in various sulfate solutions gives the analogous promoting rules as shown in Fig. 2(b). What's more, 89.0 % (1664.0 mL/g) theoretical H₂ is released in the Fe₂(SO₄)₃ solution in 5 min and the CuSO₄ solution provides 816.7 mL/g H_2 in 20 min. The H_2 generation after 20 min in ZnSO₄ solution is 378.6 mL/g, higher than that in MgSO₄ solution (244.5 mL/g). Hence, integrating the above cases, it can be drawn that the hydrolysis rate is enhanced in the order of $Mg^{2+} < Zn^{2+} < Cu^{2+} <$ Fe³⁺.

To further reveal the superb improvement of MgH₂ hydrolysis in Fe₂(SO₄)₃ solution, kinetic curves of hydrogen evolution from MgH₂ hydrolysis in Fe₂(SO₄)₃ solution as compared with in pure water were measured at different temperatures. As shown in Fig. 2(c), even at a low temperature of 274 K, the MgH₂ can release 96.1 % theoretical H₂ in 16 min in the Fe₂(SO₄)₃ solution.

Fig. 1. Schematic diagram of hydrolysis reaction device.

Fig. 2. Hydrolysis kinetic curves of the MgH₂ in different chloride solutions (a) and sulfate solutions (b) at 298 K. Hydrolysis kinetic curves of the MgH₂ at different temperatures in Fe₂(SO₄)₃ solution (c) and their Arrhenius plot (d).

The relationship between temperature and rate of MgH_2 hydrolysis can generally be expressed by the Arrhenius equation:

$$\ln k = \ln A - E_a / RT \tag{2}$$

where k is the reaction rate constant, E_a is the activation energy (J mol⁻¹), *R* is the gas constant (8.314 J mol⁻¹ K⁻¹), and *T* is the reaction temperature (K). Fig. 2(d) presents an Arrhenius plot for the hydrolysis of the MgH₂ in Fe₂(SO₄)₃ solution and the activation energy (E_a) was calculated to be 19.15 kJ mol⁻¹, which is lower than that of previously reported hydrolysis of MgH₂ in AlCl₃ solution (21.64 kJ mol⁻¹) [25] and NH₄Cl solution (30.37 kJ mol⁻¹) [26]. As for the MgH₂ hydrolysis in pure water, due to the inevitable formation of Mg(OH)₂ passivation layer on the surface of MgH₂ particle, the hydrogen release rate was improved at first but quickly degraded at the high temperature, leading to a very low hydrolysis efficiency, as shown in Fig. S3.

It has been reported that cations with higher OH⁻ affinity are more effective for facilitating the Mg hydrolytic reaction [28]. The precipitation from the metal chloride and sulfate solutions was collected and characterized by XRD and SEM to explore the effect mechanism of cations on the MgH₂ hydrolysis.

According to the XRD patterns in Fig. 3, the final MgH₂ hydrolysates in different chloride solutions are the corresponding cationic hydroxides. Among them, the hydrolysate in the FeCl₃ solution cannot be directly characterized by XRD due to a severe amorphization. After annealing at 650 °C in a nitrogen atmosphere, the XRD of Fe₂O₃ product indirectly confirms the presence of iron hydroxide in the hydrolysate. In addition, the XRD of hydrolysate in CuCl₂ solution shows the diffraction peaks of CuCl, which may be resulted from the incomplete hydrolysis of MgH₂. During the drying process of the hydrolysate, Cu (II) was redoxed to obtain Cu (I) by MgH₂. This phenomenon also appears in the hydrolysis products of CuSO₄ and Fe₂(SO₄)₃, and the formation of Cu₂O and Fe₃O₄

Fig. 3. XRD patterns of MgH₂ hydrolysis products in (a) MgCl₂ solution; (b) ZnCl₂ solution; (c) CuCl₂ solution; (d) FeCl₃ solution.

phases also indicates the existence of this redox reaction (See Fig. S2 in Supplementary material).

The H₂ generation rate is improved in the order of Mg²⁺ < Zn²⁺ < Cu²⁺ < Fe³⁺, which is the same order as the thermodynamic tendency of hydroxide formation, i.e. the OH⁻ affinity of the cation. OH⁻ affinity is defined by the pK_{sp}/x value [28]. $pK_{sp}/x = - \lg K_{sp}/x$, K_{sp} is the solubility product of $M(OH)_x$, and x is the cation valence. Apparently, the cations with higher OH⁻ affinity display a stronger promotion effect on the hydrogen evolution (see Table 1).

Fig. 4 shows the SEM images of the hydrolysis products, which illustrate the different induction effect of M^{x+} on the hydrolysis of MgH₂. The hydrolysis reacts violently and quickly in FeCl₃ solu-

Fig. 4. SEM images of the integrated MgH₂ particles in (a) pure water, (b) MgCl₂ solution and (c) FeCl₃ solution after 30 min reaction; the surface of MgH₂ particles in (d) pure water, (e) MgCl₂ solution and (f) FeCl₃ solution after 30 min reaction.

Table 1		
The pK_{sp}/x of cations and	corresponding hydrogen evolution	ution in different solutions.

Solution	pK_{sp}/x of cation	H ₂ yield in 10 min[ml/g]
$Fe_2(SO_4)_3$	12.85	1664.0
CuSO ₄	9.83	558.4
ZnSO ₄	8.83	280.0
MgSO ₄	5.62	127.1
FeCl ₃	12.85	1632.0
CuCl ₂	9.83	738.6
ZnCl ₂	8.25	373.2
MgCl ₂	5.62	227.0

tion so that the MgH₂ particles changed a lot in appearance while the overall shape of the MgH₂ particles has not changed much in pure water and MgCl₂ solution (Fig. 4(a)–(c)). In addition, we can see from Fig. 4(d)–(f) that there is a clear passivate Mg(OH)₂ layer wrapped on the surface of MgH₂ particle in the pure water condition, but in the MgCl₂ solution, the Mg(OH)₂ sheets have a tendency to extend outward, and for the FeCl₃ solution, visible product particles with an average diameter ~100 nm can be observed with the disappearance of MgH₂ particles. In the Fe₂(SO₄)₃ solution, the morphology change of MgH₂ particles is showed in Fig. S4b, the MgH₂ particles also changed greatly in appearance and the final products are formed with lots of flakes showing a diffusion state (Fig. S4d). The change of the surface of MgH₂ particles in different solutions suggests that the cations play an important role in inducing the growth of the hydrolysis products for the solution to reach the MgH₂ surface. Moreover, the cations with higher affinity to OH⁻ will exhibit a stronger introducing effect, as the surface of MgH₂ particles has a more dramatic changes in appearance in FeCl₃ solution than in MgCl₂ solution.

Based on the SEM results, this promotion effect of various M^{x+} can be understood as the illustration in Fig. 5. Different from the passive Mg(OH)₂ formed in the MgH₂ surface in pure water (Fig. 5(a)), the M^{x+} existed in solution can induce the conformation of $M(OH)_x$ around the MgH₂ particles (Fig. 5(b)). In this case, the cations M^{x+} with high affinity to OH⁻ will compete for the OH⁻ species and induce the growth of $M(OH)_x$ with priority, so the formation of the Mg(OH)₂ passivation layer in the MgH₂ sur-

Fig. 5. Schematic illustration of the mechanism for the hydrolysis of MgH₂ in (a) pure water and (b) M^{x+} solution.

Fig. 6. (a) Hydrolysis kinetic curves of the MgH₂ in different Mg²⁺ solutions and pure water at 298 K. (b) Hydrolysis kinetic curves of the MgH₂ in MgCl₂ solution at different temperatures. The inset is their Arrhenius plot.

Fig. 7. The water utilization rate of MgH₂ hydrolysis in the (a) 0.5 M MgCl₂, MgSO₄ and Mg(CH₃COO)₂ solutions, and (b) the mixture solutions of 0.5 mol L⁻¹ MgCl₂, 0.5 M MgCl₂ + 0.1 M Mg(CH₃COO)₂, 0.5 M MgCl₂ + 0.1 M MgSO₄, and (c) the mixed solutions of different concentration ratios for MgCl₂ and MgSO₄ at 298 K. The solution volume is 10 ml. (d) the power function model Eq. (3) fitting curve between H₂O utilization rate and solution volume for 0.5 M MgCl₂ + 0.05 M MgSO₄ solution.

face is inhibited and the hydrogen generation is enhanced to a large extend. The XRD characterizations of the precipitation product also fit the statement for the induction effect of cations very well.

3.2. The influence of anions in MgH₂ hydrolysis

The hydrolysis kinetic curves of different magnesium salt solutions are established in Fig. 6(a). As can be seen, the presence of magnesium salts in the solution can obviously increase the hydrolysis rate compared to the pure water environment. MgCl₂, MgSO₄ and Mg(CH₃COO)₂ solution can achieve a high reaction degree to near 100% (1864.0 mL/g) within 150, 235 and 357 min, respectively. Nevertheless, the hydrolysis reaction degree is 70.0% (1304.8 mL/g) for Mg(ClO₄)₂ solution and 63.5% (1183.6 mL/g) for Mg(NO₃)₂ solution

tion, even though the reaction time was increased to 400 min. It is distinctly that the improvement of MgH₂ hydrolysis is increased in this order of MgCl₂ > MgSO₄ > Mg(CH₃COO)₂ > Mg(ClO₄)₂ > Mg(NO₃)₂. Awad et al. [22] have reported that chloride ions can replace hydroxide ions which bring the formation of soluble MgCl₂ and the destruction of passive layer to promote the reaction. From our results, the various anions may have the similar function and the order of the replacement effect of anions is as follows: Cl⁻ > SO₄²⁻ > CH₃COO⁻ > ClO₄⁻ > NO₃⁻. To further investigate the kinetics effect of Cl⁻, the hydrogen generation of MgH₂ hydrolysis at various temperatures in MgCl₂ solution were obtained as shown in Fig. 6(b). When the system temperature increased from 298 K to 328 K, the hydrogen yield of MgH₂ hydrolysis in MgCl₂ solution increased from 26.1 % (298 K) to 45.3 % (308 K), 72.0 % (318 K) and

Fig. 8. (a) Proposed hydrogen generation system based on the hydrolysis of MgH_2 in mixed 0.5 M MgCl₂ and 0.05 M MgSO₄ solution with continuous feeding of MgH_2 ; (b) The solid curve: simulated system H_2 O utilization rate at different solution volume based on Eq. (3). The dashed line: the 100 % H_2 O utilization rate.

Fig. 9. SEM images of hydrolysis products in the mixed solutions of (a) 0.5 M MgCl₂ + 0.05 M MgSO₄, (b) 0.5 M MgCl₂ + 0.1 M MgSO₄, (c) 0.5 M MgCl₂ + 0.5 M MgSO₄, (d) 0.5 M MgCl₂ + 0.1 M Mg(Cl₂ + 0.1 M Mg(Cl₂

99.6 % (328 K) in 20 min. And the apparent activation energy (E_a) was calculated by Eq. (2) to be 51.02 kJ mol⁻¹.

Besides the kinetics, it was found that the H₂O utilization rate is different in various anions solutions. Generally, the MgH₂ hydrolysis is carried out in a condition that the amount of H₂O is far exceeding in order to guarantee a complete hydrolysis of MgH₂, which inevitably leads to the decreased hydrogen capacity in the whole MgH₂/H₂O system. Obviously, it is significative to enhance the H₂O utilization, so we use the H₂O utilization rate to describe the roles of anions and the results are shown in Fig. 7 (Complete and specific hydrogen release curves are shown in Figs. S5–S8). Because of the low degree of hydrolysis, the $Mg(ClO_4)_2$ and $Mg(NO_3)_2$ solutions are not considered. For a single anion, the H₂O utilization rate is less than 32 % (Fig. 7(a)). However, when two anions are mixed together, the H_2O utilization rate is improved as shown in Fig. 7(b). Specially for the mixed MgCl₂ and MgSO₄ solution (0.5 M MgCl₂ + 0.1 M MgSO₄), the H_2O utilization rate comes to 43 %. What's more, Fig. 7(c) indicates that the concentrations of the mixed solutions also affect the water utilization, and the 0.5 M MgCl₂ + 0.05 M MgSO₄ solution demonstrates the highest H₂O utilization rate of 47.9 %.

Except for the influence of the concentration for the mixed solution, the volume of the solution also has a certain effect on the water utilization rate. The relationship between H_2O utilization rate and solution volume in 0.5 M MgCl₂ + 0.05 M MgSO₄ solution can be well described by the power function of Eq. (3), as shown by the black curve in Fig. 7(d).

$$y = a \cdot x^D \tag{3}$$

This is a mathematical model to describe the trend of relationship changes, and has no actual physical and chemical meaning. However, on the grounds of this mathematical model, we designed a hydrogen evolution system as shown in Fig. 8(a). It demonstrates that if there are 60 L (normal vehicle gasoline volume) mixed 0.5 M MgCl₂ + 0.05 M MgSO₄ solution in the system, the H₂O utilization rate will be 95.1 %. On the other hand, if the weight of water is calculated, the systematic hydrogen capacity of MgH₂ hydrolysis process is 6.5 wt. %. The higher H₂O utilization rate will result in the higher systematic hydrogen capacity, and when the H₂O utilization rate comes to 100 %, deservedly the hydrogen storage capacity of the MgH₂/H₂O system is 6.5 wt. %. In this regard, with the increased volume of 0.5 M MgCl₂ + 0.05 M MgSO₄ solution as displayed in Fig. 8(b), which leads to an increased H₂O utilization rate, the hydrogen evolution system in Fig. 8(a) can gradually approaching 100 % H₂O utilization rate which is established as a dashed line (Fig. 8(b)). In this way, the hydrogen storage capacity

of the whole system can achieve the theoretical hydrogen storage capacity at the same time.

For the sake of exploring the mechanism of anion effect on water utilization, the morphology of the final products in various anions solutions is characterized as shown in Fig. 9. It can be seen that as the particle size of the flakes decreases, the hydrolysis efficiency increases significantly. The maximum water utilization rate obtained corresponds the smallest particle size distribution in the final products, which is mainly in the range of 40-60 nm (Fig. 9(a)). On the contrary, the minimum water utilization rate gives the largest particle size distribution of 500-600 nm (Fig. 9(d)). Furthermore, in the single anion solution, the particle size of product is even >1 μ m (Fig. S9). These results indicate that the anion solution does affect the water utilization rate by affecting the morphology of the hydrolysate. The larger the flaky size of the hydrolysate particles, the easier it is to form a flaky cross structure (Fig. 9(c)-(d)), and the easier it is to lock in moisture, thus reducing the utilization of water.

4. Conclusion

In this study, the functions of different anions and cations in solutions for MgH₂ hydrolysis are demonstrated and the H₂ generation from the MgH₂ hydrolysis is promoted significantly by low-cost chlorides and sulfates solutions. The cations with high affinity to OH-in the solution will induce the outward growth of hydroxide and thus inhibiting the formation of the surface Mg(OH)₂ passivation layer. The H₂ yield of MgH₂ hydrolysis in FeCl₃ and $Fe_2(SO_4)_3$ solutions, in which the Fe^{3+} has the largest affinity to OHamong the studied metal cations, comes up to 1632.0 mL/g H_2 and 1664.0 mL/g in 6.2 min and 5 min, respectively. With regard to the anions, we found it can effectively affect the morphology of hydrolysis product, thereby affecting the water utilization. Especially in the mixed 0.5 M MgCl₂ and 0.05 M MgSO₄ solution, the H₂O utilization rate can reach to the highest value among the various anion solutions. Furthermore, under the prediction of the mathematical model for the relationship between H₂O utilization rate and solution volume, with continuously increasing the solution volume to 60 L, the H₂O utilization rate can reach to nearly 100 %. On account of the high attainable hydrogen capacity and high abundance of the raw materials, the solution promoted hydrolysis of MgH₂ is highly attractive for onsite H₂ generation.

Acknowledgements

This work was partially supported by the National Key Research and Development Program of China (2017YFA0204600), the National Science Fund for Distinguished Young Scholars (51625102), the National Natural Science Foundation of China (51971065) and the Innovation Program of Shanghai Municipal Education Commission (2019–01–07–00–07-E00028). Zhenguo Huang is grateful for the financial support from ARC (DP170101773).

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.jmst.2020.09. 036.

References

- [1] S. Chu, A. Majumdar, Nature 488 (2012) 294–303.
- [2] N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. Engl. 46 (2007)
- 52–66. [3] L Schlapbach A Zuttel Nature 414 (2001) 353–358
- [3] L. Schlapbach, A. Zuttel, Nature 414 (2001) 353–358.
 [4] G.W. Grahtree, M.S. Dresselbaus, M.V. Buchanan, Phys. Today 57 (2004) 39
- [4] G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57 (2004) 39–44.
 [5] X. Yu, Z. Tang, D. Sun, L. Ouyang, M. Zhu, Prog. Mater. Sci. 88 (2017) 1–48.
- [6] T. He, H. Cao, P. Chen, Adv. Mater. 31 (2019), e1902757.
- [7] X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, Mater. Today Nano 9 (2020), 100064.
- [8] W. Grochala, P.P. Edwards, Chem. Rev. 104 (2004) 1283–1316.
- [9] J.G. Novakovic, N. Novakovic, S. Kurko, S.M. Govedarovic, T. Pantic, B.P. Mamula, K. Batalovic, J. Radakovic, J. Rmus, M. Shelyapina, N. Skryabina, P. de Rango, D. Fruchart, Chemphyschem 20 (2019) 1216–1247.
- [10] L. Ouyang, M. Ma, M. Huang, R. Duan, H. Wang, L. Sun, M. Zhu, Energies 8 (2015) 4237–4252.
- [11] T. Tayeh, A.S. Awad, M. Nakhl, M. Zakhour, J.F. Silvain, J.L. Bobet, Int. J. Hydrogen Energy 39 (2014) 3109–3117.
- [12] M. Tegel, S. Schöne, B. Kieback, L. Röntzsch, Int. J. Hydrogen Energy 42 (2017) 2167–2176.
- [13] H. Uesugi, T. Sugiyama, H. Nii, T. Ito, I. Nakatsugawa, J. Alloys Compd. 509 (2011) S650–S653.
- [14] X. Xie, C. Ni, B. Wang, Y. Zhang, X. Zhao, L. Liu, B. Wang, W. Du, J. Alloys Compd. 816 (2020), 152634.
- [15] J. Chen, H. Fu, Y. Xiong, J. Xu, J. Zheng, X. Li, Nano Energy 10 (2014) 337–343.
 [16] J. Jiang, L. Ouyang, H. Wang, J. Liu, H. Shao, M. Zhu, Chemphyschem 20 (2019)
- 1316–1324. [17] J.M. Huang, R.M. Duan, L.Z. Ouyang, Y.J. Wen, H. Wang, M. Zhu, Int. J.
- Hydrogen Energy 39 (2014) 13564–13568. [18] B. Yang, J. Zou, T. Huang, J. Mao, X. Zeng, W. Ding, Chem. Eng. J. 371 (2019)
- [10] D. Fang, J. Zou, T. Huang, J. Wao, A. Zeng, W. Ding, Chem. Eng. J. 571 (2019) 233–243.
- [19] L.Z. Ouyang, Z.J. Cao, H. Wanga, J.W. Liu, D.L. Sun, Q.A. Zhang, M. Zhu, J. Alloys Compd. 586 (2014) 113–117.
- [20] J. Mao, J. Zou, C. Lu, X. Zeng, W. Ding, J. Power Sources 366 (2017) 131–142.
- [21] J.P. Tessier, P. Palau, J. Huot, R. Schulz, D. Guay, J. Alloys Compd. 376 (2004) 180–185.
- [22] A.S. Awad, E. El-Asmar, T. Tayeh, F. Mauvy, M. Nakhl, M. Zakhour, J.L. Bobet, Energy 95 (2016) 175–186.
- [23] M.-H. Grosjean, L. Roué, J. Alloys Compd. 416 (2006) 296-302.
- [24] M. Ma, L. Ouyang, J. Liu, H. Wang, H. Shao, M. Zhu, J. Power Sources 359 (2017) 427–434.
- [25] D. Gan, Y. Liu, J. Zhang, Y. Zhang, C. Cao, Y. Zhu, L. Li, Int. J. Hydrogen Energy 43 (2018) 10232–10239.
- [26] M. Huang, L. Ouyang, H. Wang, J. Liu, M. Zhu, Int. J. Hydrogen Energy 40 (2015) 6145–6150.
- [27] L.G. Sevastyanova, S.N. Klyamkin, B.M. Bulychev, Int. J. Hydrogen Energy 45 (2019) 3046–3052.
- [28] J. Zheng, D. Yang, W. Li, H. Fu, X. Li, Chem. Commun. 49 (2013) 9437–9439.
 [29] M. Grosjean, M. Zidoune, L. Roue, J. Huot, Int. J. Hydrogen Energy 31 (2006) 109–119.