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a b s t r a c t   

Lithium–sulfur (Li–S) batteries have attracted great interest for next-generation batteries owing to their 
high capacity density and low cost. However, the drawbacks of the low conductivity of sulfur, serious 
“shuttle effect” and huge volume expansion during the charging/discharging cycles greatly limit their 
practical applications. In this work, we report the synthesis of porous sulfurized poly(acrylonitrile) (PAN/S) 
nanofibers via thermal treatment of PAN/poly(methyl methacrylate) (PMMA) nanofibers with elemental 
sulfur, resulting in 48 wt% of covalently bound sulfur formed in the composite. The unique porous structure 
of nanofibers enables enhanced diffusion dynamics of ions and electrons, thus improving the reactivity and 
conductivity of sulfur. As a consequence, the porous PAN/S cathode delivers a high reversible capacity of 
1144 mA h g−1 after 100 cycles at a current rate of 0.2 C and a high rate performance with a reversible 
discharge capacity of 794 mA h g−1 at 2 C after 500 cycles. 

© 2020 Elsevier B.V. All rights reserved.    

1. Introduction 

Lithium secondary batteries have been widely used in electric 
vehicle and grid storage applications [1,2]. However, the existing 
commercial batteries cannot fully meet the requirements for these 
fields [3–5]. Developing new electrode materials, especially cathode 
materials, is the key to getting better battery systems with higher 
energy density and lower cost [4]. In recent years, Lithium–sulfur 
(Li–S) batteries, of which the cathode is sulfur, have attracted great 
attention in both scientific and industrial fields because of their high 
reversible specific capacity (1672 mA h g−1), nontoxicity, and low 
cost of sulfur resources [6–9]. However, the development of Li–S 
batteries is limited due to the low conductivity, serious “shuttle ef-
fect” and huge volume expansion of sulfur cathode during charge 
and discharge cycles [10–13]. 

Combining sulfur with various carbon-based materials, such as 
grapheme [14,15], nanostructured carbonaceous materials [16–24] 
and silicon–carbon materials [18,25], to obtain C/S composites is an 
effective approach to improve the conductivity of the cathode. 
However, the volume expansion and shuttle effect can only be al-
leviated to a certain extent. Besides, C/S composite cathodes are not 
suitable in carbonate-based electrolytes, which are typically used in 
commercial Li-ion batteries [6,26–28]. Polysulfides would be con-
sumed by carbonates based solvents, which will result in sulfur in-
activity entirely [29–31]. To address this limitation, new approaches 
must be announced to ensure the sulfur cathode that can charge and 
discharge with high efficiency in carbonate-based electrolytes [32]. 

In 2002, Wang et al. firstly reported sulfurized polyacrylonitrile 
(PAN/S) composites as an appealing cathode material in Li–S bat-
teries [33]. In the PAN/S composite, sulfur is covalently bound to the 
polymer backbones of PAN via thermal treatment of PAN particles 
and excess sulfur powder at a temperature above 300 °C [34–37]. 
During discharge, the solid-solid reaction mechanism suggests that 
no polysulfide ions are formed [38]. Therefore, the dissolution of 
reaction intermediates, i.e., shuttle effect, was reported to be com-
pletely suppressed in organic carbonate-based electrolytes [39]. By 
using PAN/S cathode, high sulfur utilization, high Coulombic effi-
ciency and excellent cycling stability can be obtained [35–37,40,41]. 
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However, the insufficient chemical bonding sites leads to the low 
sulfur content (~40 wt%) of PAN/S composite. Tailored porous 
structures with optimal porosity and high specific surface area is an 
ideal option to alleviate this issue. Besides, it can provide directed 
diffusion pathways for ions, and thus improves the electrical and 
ionic conductivity of the cathode. 

In this work, we developed porous PAN/S nanofibers which were 
synthesized via electrospinning and subsequent calcination. The 
PAN/poly(methyl methacrylate) (PMMA) nanofibers that was col-
lected by electrospinning was heated with excess sulfur power to 
obtain porous PAN/S. The porous morphology of nanofibers increase 
the reactive site for sulfur, and enlarge the contact area between the 
electrolyte and the active material. As a result, the PAN/S cathode 
delivers stable charge/discharge cycling and high rate performance, 
enabling it an ideal candidate for Li–S batteries. 

2. Experimental section 

PAN (molecular weight of 150,000) and PMMA (molecular weight 
of 120,000) ratio was set at 7:1. PAN/PMMA powder (800 mg) was 
added into 10 ml of N, N-dimethyl formamide (DMF) and then 
stirred for 24 h to obtain the PAN/PMMA solution. For comparison, 
800 mg of PAN powder was added into10 ml of DMF to obtain pure 
PAN solution. 

The PAN/PMMA and pure PAN solutions were absorbed in an 
injection syringe and subjected to electrospinning. A constant vo-
lume flow rate of 0.3 ml h−1 was controlled with a syringe-type in-
fusion pump. The distance between the steel needle to the collector 
was 15 cm. The as-spun nanofibers were then vacuum treated in an 
oil bath pan at 80 °C for 12 h to ensure that the solvent was fully 
drained. The as-collected nanofibers were mixed with excess sulfur, 
and the resulting mixture was heat-treated in a nitrogen atmosphere 
at a temperature of 300 °C for 4 h at a heating rate of 2 °C min−1. In 
the heating process, PAN was reacted with sulfur and then dehy-
drogenated to form PAN/S [42]. Carbon double bonds were sulfur-
ized, while PMMA decomposed to form porous morphology, finally 
forming porous PAN/S nanofibers [43]. The as-collected nanofibers 
synthesized using pure PAN solution were also heated using the 
same parameters, resulting the formation of non-porous PAN/S na-
nofibers. 

The morphology and structure of the porous nanofibers were 
characterized by X-ray diffraction (XRD), scanning electron micro-
copy (SEM), transmission electron microscopy (TEM), Raman spec-
troscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen 
absorption/desorption isotherms (BET technique). The XRD patterns 
were recorded in the 2θ range from 10° to 80° at a scan rate of 
5 min−1. JEOL 7500FA and JEOL 2011F FE were used to obtain the 
TEM and SEM images, respectively. Raman spectra, XPS spectra, and 
BET were obtained using a NEXUS 670 FT-IR Raman spectrometer, 
Thermo ESCALAB 250XIXPS system, and NOVA 4200e instrument, 
respectively. The sulfur content in the composite was measured with 
a Vario Micro Cube Elemental Analyzer. 

All cells (2032 coin-type cells) were assembled inside a glovebox 
filled with high-purity argon with lithium foil as the anode. The as- 
prepared active materials, Ketjen Black, and carboxymethyl cellulose 
binder were mixed at a weight ratio of 70:20:10 to obtain the slurry, 
which was used as coating on the aluminum foil to prepare the 
cathode. The coated foil was dried at 70 °C in a vacuum for 12 h. 
Approximately 1 M of lithium hexafluorophosphate(LiPF6) in pro-
pylene carbonate (PC):ethylene carbonate (EC):diethyl carbonate 
(DEC) = 1:4:5 was used as organic carbonate electrolyte. The cells 
were tested galvanostatically on a LAND-CT2001C test system at a 
potential interval of 1.0–3.0 V. The specific capacity was calculated 
on the basis of the sulfur content ratio in the composite nanofibers. 
Cyclic voltammetric measurements were executed using an elec-
trochemical work station at a scan rate of 0.1 mV s−1. 

3. Results and discussion 

The synthesis of the PAN/S nanofibers is schematically illustrated 
in Scheme 1. The ratio of PMMA to PAN in the electrospinning so-
lution was 1:7. The porous PAN/S nanofibers were prepared by 
electrospinning the PAN/PMMA solution, followed by thermal 
treatment at 300 °C to allow the reaction of PAN with sulfur and to 
decompose PMMA to form a porous structure. 

The morphological and structural features of porous PAN/S na-
nofibers were characterized by SEM, TEM, XRD, Raman spectroscopy, 
XPS, and BET. The SEM image in Fig. 1a reveals that the diameter of 
the electrospun PAN/PMMA nanofibers ranges from 200 nm to 
300 nm. After heat treatment with S powder, the porous PAN/S na-
nofibers present relatively smooth surface and uniform morphology 
with some pores both on the surface and in the interior (Fig. 1c and 
d). The porous structure is formed by thermal elimination of PMMA 
during heating process [44]. These nanofibers also show a diameter 
ranging from 200 nm to 300 nm. As compared, the non-porous PAN/ 
S nanofibers synthesized by using pure PAN exhibit smooth surface 
and uniform morphology without the formation of pores both on the 
surface and in the interior (Fig. 1b). 

The TEM image in Fig. 2a reveals the porosity of the nanofibers. 
The holes are well dispersed with sizes of approximately 10–20 nm. 
This structural feature can effectively improve the contact between 
the cathode and the electrolyte and thus enhance the conductivity of 
ions and electrons. The corresponding EDX element mapping in  
Fig. 2b, c, and d shows that both carbon and sulfur elements in the 
composite are distributed homogeneously. 

Fig. 3a shows the XRD patterns of the partially carbonized porous 
PAN/S nanofibers(c-PAN/S) and PAN without sulfur (c-PAN) and 
pristine sulfur for comparison. The broad diffraction peak of c-PAN/S 
at 25° well matches with the peak of c-PAN but not with the peak of 
pristine sulfur. This finding indicates that PAN and sulfur are suc-
cessfully mixed in the composite, and sulfur is dispersed in the PAN 
matrix in an amorphous state [37,45]. 

Fig. 3b reveals the Raman spectra of porous PAN/S nanofibers. 
On the basis of previous studies, the peaks at 170 cm−1, 460 cm−1 

and 920 cm−1 are assigned to the C–S, S–S and S–S bonds, re-
spectively, demonstrating the chemical bond of sulfur and PAN  
[46]. Moreover, the spectrum shows two peaks at 1350 cm−1 and 
1580 cm−1, which correspond to the D band and G band, respec-
tively. This finding indicates the amorphous structure of the 
composite [46]. 

Scheme 1. Schematic illustration of the synthetic process for the (a) non-porous PAN/ 
S nanofibers and (b) porous PAN/S nanofibers. 
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Fig. 1. SEM images of electrospun PAN/PMMA nanofibers(a), non-porous PAN/S nanofibers(b) and porous PAN/S nanofibers(c,d).  

Fig. 2. (a) TEM image of porous PAN/S nanofibers, (b,c,d) EDS mapping of porous PAN/S nanofibers; (c) C element (d) S element.  
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The XPS results are shown in Fig. 3c and 3d. In Fig. 3c, the C 1s 
spectrum can be divided into three sub-peaks. The main peak at 
284.6 eV can be attributed to the sp2-hybridized carbon [47]. The 
peak at 285.5 eV corresponds to the C–S bonds obtained by the re-
action of sulfur and PAN during the heating process [47]. The minor 
peak at 286.4 eV corresponds to the C˭N bonds in cycled PAN/S or 
C–O bonds formed by small range of oxidation reaction during the 
heating process [48]. It indicates that the sulfur is chemically reacted 
with PAN framework. The S 2p spectra in Fig. 3d reveals that the 
main peak can be split into two peaks at 163.5 eV and 164.7 eV, re-
spectively. The peak at 163.5 eV (S 2p3/2) can be attributed to the 
single bonded sulfur species (C−S, S−S), i.e. thioethers, thiols, or di- 
or polysulfides [49,50]. The peak at 161.6 eV corresponds to sulfur 
species with a double bond to carbon(C˭S), i.e., thioamides, thioke-
tones, or thioureas [51,52]. It demonstrates that the sulfur reacts 
with PAN framework in different places, which lead to the formation 
of different kinds of chemical bonds between C and S atoms and the 
PAN/S composites contained various C, S functional groups [32]. 

The specific surface areas of non-porous and porous PAN/S na-
nofibers were measured via N2 adsorption measurements (Fig. S1). It 
reveals that the porous PAN/S nanofibers exhibit considerably larger 
surface area than non-porous PAN/S nanofibers (65 m2 g−1 vs. 11 m2 

g−1), indicating that the formation of PMMA-derived porous struc-
ture could increase the contact of active material in the cathode and 
electrolyte. 

The electrochemical performance of the porous PAN/S nanofibers 
as cathodes was evaluated, as shown in Fig. 4. The sulfur contents in 

the non-porous and porous PAN/S nanofibers are confirmed to be 
40% and 48%, respectively. Fig. 4a shows the cyclic voltammograms 
of the porous PAN/S nanofiber cathode at a scan rate of 0.1 mV s−1. 
One cathodic peak is observed in the first cycle at 1.3 V. This voltage 
hysteresis is related to cleavage of S−S bonds adjacent to the carbon 
ring, which need to input higher energy [39,53]. In the next cycle, 
the oxidation peak is at 1.7 V and the reduced peak is at 2.3 V. The 
one pair feature of anodic/cathodic peaks implies the elimination of 
high-order lithium polysulfides, which probably because active 
sulfur existed principally as S3 or S2 attached to the adjacent carbon 
backbone [53,54]. These basic electrochemical characteristics are 
similar to the results observed from the reported PAN/S compo-
site [53–55]. 

Fig. 4b displays the galvanostatic charge–discharge curves in the 
1st, 2nd, 3rd, and 100th cycles for the porous PAN/S nanofibers. The 
curves of the nanofiber cathode show a one-stage potential profile 
with a long plateau at a potential of 1.7 V at the first discharge with a 
discharge capacity of 1692 mA h g−1. The plateau shift to 1.9 V after 
the second cycle with discharge capacities of 1403 mA h g−1, 1385 
mA h g−1， and 1144 mA h g−1 for the 2nd, 3rd, and 100th cycle, re-
spectively. As for charge process, the cathode show a higher single- 
charge plateau at a potential over 2.3 V, giving charge capacities of 
1421 mA h g−1, 1387 mA h g−1, 1372 mA h g−1 and 1144 mA h g−1 in 
the 1st, 2nd, 3rd, and 100th cycle, respectively, indicating the high 
reversible capacity of the porous PAN/S nanofiber cathode. 

Fig. 4c shows the discharge cycling performance and coulombic 
efficiency of the porous PAN/S nanofiber cathode under a current 

Fig. 3. (a) XRD patterns of porous PAN/S nanofibers (c-PAN/S), (b) Raman spectrum of porous PAN/S nanofibers, (c,d) XPS of C and S element.  
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density of 0.2 C. Clear capacity decay is only observed after the first 
cycle, followed by a relatively stable discharge capacity. The main 
reason for the capacity loss after the first cycle could be attributed to 
the formation of the SEI film [56,57]. The discharge capacity at the 
100th cycle is high to 1144 mA h gsulfur

−1, and the Columbic efficiency 
reaches to ~100%. This finding confirms the effectiveness of the 
porous PAN/S nanofiber architecture in improving sulfur reactivity. 
For the non-porous PAN/S nanofibers, although the initial capacity is 
1700 mA h gsulfur

−1, it decreases sharply to 1052 mA h gsulfur
−1 after 

20 cycles and further decreases to 972.5 mA h gsulfur
−1 after 100 cy-

cles. The pure sulfur cathode, in which the ether electrolytes are 
used, demonstrated even worse capacity retention ability. 

The rate capacities of porous PAN/S nanofibers are shown in  
Fig. 4d. The results display that the discharge capacity decreases 

gradually during the initial few cycles at 0.1 C, and then became 
stable in further cycles. At higher C-rate, the capacity decreases 
regularly. When the C-rate is switched back from 3 C to 0.2 C, the 
discharge capacity increased up to 1158 mA h gsulfur

−1, indicating the 
excellent recovery of discharge capacity. These results confirm that 
the porous PAN/S nanofibers have good electrochemical cycle sta-
bility and structure stability even under large current density. In 
addition, the sample with a ratio of PAN:PMMA = 7:1 showed better 
performance than that without the addition of PMMA, indicating the 
importance of PMMA on improving the properties of the composite. 
The effect of various ratios of PAN/PMMA on the electrochemical 
properties of PAN/S nanofiber was investigated, and the results are 
shown in Figs. S2 and S3. The best ratio of PAN/PMMA that can ef-
fectively balance the advantages and drawbacks of PMMA for the 

Fig. 4. (a) Cyclic voltammograms curves for the porous PAN/S nanofiber cathode at a scan rate of 0.1 mV s−1; (b) Galvanostatic discharge/charge voltage profiles for the porous 
PAN/S nanofiber cathode with selected cycles at 0.2 C; (c) Cycling performance of the porous PAN/S nanofiber cathode at 0.2 C as compared with the pure S and non-porous PAN/S 
cathode; (d) Rate performance for the porous PAN/S nanofiber cathode at current densities from 0.1 C to 3 C; (e) Cycling performance of the porous PAN/S nanofiber cathode at 2 C 
as compared with the non-porous PAN/S cathode. 
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production of porous structure is found to be 7:1. When a small 
amount of PMMA is added, the porous structure formed is not en-
ough to enhance the electrochemical performance. However, after 
adding excessive amount of PMMA, the carbon matrix is destroyed 
during the synthesis. 

The cycling performance of the porous PAN/S nanofibers are 
further investigated as shown in Fig. 4e. At a high current rate of 2 C, 
the initial discharge capacity of porous PAN/S nanofibers is de-
termined to be approximately 1620 mA h gsulfur

−1, and after 500 
cycles, it could still be maintained at 794 mA h gsulfur

−1. However, the 
capacity of non-porous PAN/S nanofibers could only maintain at 
522mA h gsulfur

−1. On the basis of the above results, it can be clearly 
concluded that the porous PAN/S nanofiber cathode possesses sig-
nificantly improved capacity and cycling performance. This excellent 
performance is attributed to the porous nanofiber structure, which 
plays an important role in enhancing the directed diffusion path-
ways for ions and electrons [32]. Moreover, to demonstrate the 
structural integrity of porous PAN/S nanofibers, the morphology of 
the cathode after cycling is studied. As shown in Fig. S5, the well 
preserved porous structure after long-term cycling demonstrates the 
outstanding structural integrity, which contributes to the improved 
cycling stability. 

Fig. S4 shows the comparison of EIS between porous and non- 
porous PAN/S nanofibers after a few cycles using 2 electrode system. 
The Nyquist plot is composed of the bulk resistance of the electrolyte 
at high frequency, charge transfer resistance at middle frequency 
and Warburg impedance at low frequency. The corresponding cal-
culated impendence values are given in Table S1. In the middle 
frequency region, the charge transfer resistances of porous PAN/S is 
17.6 Ω, while the charge transfer resistances of non-porous PAN/S is 
87.82 Ω. A much smaller value of porous PAN/S indicates that the 
porous structure of the composite could reduce the charge transfer 
resistance. Such results further confirm that the porous structure 
improves the ion and electron conductivity and enables better per-
formance in capacity and cycle stability. 

Compared with the previously reported performance for the 
PAN/S fiber materials (Table S2), the porous PAN/S nanofibers attain 
outstanding electrochemical performance because of their unique 
structural morphology. The schematic illustration for the improve-
ment is shown in Fig. 5. The porous PAN/S nanofibers create a na-
noscaled crack-free cathode coating, which result in a relatively large 
specific surface area and effective conduction networks for the dif-
fusion of electrons and lithium ions. Moreover, compared with the 
non-porous PAN/S nanofibers, the porous morphology is able to 
provide more sufficient contact with the electrolyte and further 
create a convenient passage way for Li+ and electron to react with 
active materials more sufficiently, resulting in the enhancement of 
ion and electron conductivity and reactivity of sulfur. Such mor-
phology effectively improves the charge/discharge capacities 

especially at high current. In addition, the bonds between carbon 
and sulfur in the PAN/S composites indicate that polysulfides only 
emerge in a short-chain form and have low solubility in the organic 
carbonate-based electrolytes, thereby preventing the “shuttle effect” 
of polysulfides and improving cycle ability. All these features guar-
antee the porous PAN/S nanofibers an excellent electrochemical 
performance. 

4. Conclusions 

Porous PAN/S nanofibers were prepared via electrospinning 
method combined with heat treatment process. The PMMA acts as a 
pore-forming agent to produce porous morphology, which is bene-
ficial for the diffusion of ions and electrons, thus improving the ca-
pacity and cycling performance. The porous PAN/S nanofiber cathode 
in the carbonate-based electrolyte exhibit high cycle stability (1144 
mA h g−1 at 0.2 C after100 cycles, 794 mA h g−1 at 2 C after 500 cy-
cles) and Coulombic efficiency (~100%). The creative structure of 
PAN/S composite combined with the unique working mechanism of 
PAN/S in carbonate-based electrolyte provide new insights for 
manufacturing long-life and high-capacity Li–S batteries. 
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