

Cite This: ACS Nano 2022, 16, 8040-8050

Metal Hydrides with In Situ Built Electron/Ion **Dual-Conductive Framework for Stable All-**Solid-State Li-Ion Batteries

Panyu Gao, Shunlong Ju, Zipeng Liu, Guanglin Xia,* Dalin Sun, and Xuebin Yu*

ACCESS Metrics & More Article Recommendations s Supporting Information

Read Online

ABSTRACT: Due to their high theoretical specific capacity, metal hydrides are considered to be one of the most promising anode material for all-solid-state Li-ion batteries. Their practical application suffers, however, from the poor cycling stability and sluggish kinetics. Herein, we report the in situ fabrication of MgH₂ and Mg₂NiH₄ that are uniformly space-confined by inactive Nd2H5 frameworks with high Li-ion and electron conductivity through facile hydrogenation of single-phase Nd₄Mg₈₀Ni₈ alloys. The formation of MgH₂ and Mg₂NiH₄ nanocrystals could not only shorten Li-ion and electron diffusion pathways of the whole electrode but also relieve the induced stress upon volume changes. Additionally, the robust frameworks constructed by homogeneous distribution of inactive Nd₂H₅ based on

a molecular level could effectively alleviate the volume expansion and phase separation of thus-confined MgH₂ and Mg₂NiH₄. More importantly, it is theoretically and experimentally verified that the uniform distribution of Nd_2H_5 , which is an electronic conductor with a Li-ion diffusion barrier that is much lower than that of MgH_2 and Mg_2NiH_4 , could further facilitate the electron and Li-ion transfer of MgH₂ and Mg₂NiH₄. Consequently, the space-confined MgH₂ and Mg₂NiH₄ deliver a reversible capacity of 997 mAh g⁻¹ at 2038 mA g⁻¹ after 100 cycles.

KEYWORDS: all-solid-state Li-ion batteries, metal hydrides, magnesium hydride, Li storage performance, cycling stability

he rapid development of electronic vehicles and energy storage devices has stimulated the ever-growing requirements of Li-ion batteries (LIBs) with high energy density by exploring various emerging high-capacity anodes.¹⁻⁴ Among the recently developed anodes, metal hydrides have been widely regarded as one of the promising candidates due to their ultrahigh theoretical Li storage capacity (e.g., 2032 mAh g^{-1} for MgH₂) based on the conversion reaction: MH_x + xLi⁺ + xe⁻ \leftrightarrow M + xLiH.⁵⁻⁷ Moreover, in comparison to all other conversion electrodes, the lowest value of polarization ever reported could be observed for MgH₂, resulting from the facile transportation of hydrogen, which effectively reduces the risk of thermal runaway upon cycling.⁸⁻¹⁰ Nevertheless, the poor electronic conductivity of MgH₂ particles and the particle agglomeration and phase separation induced by serious volume change^{8,11-13} lead to the rapid capacity decay during the charge/discharge cycles using traditional liquid organic electrolytes. Although these issues could be improved by building nanostructured anodes of MgH₂ to a large extent, the continuous and rapid decay of reversible capacity of MgH2 is still observed due to the inevitable detrimental reactions between electrodes and

electrolytes.¹⁴ In addition, the liquid organic electrolytes intrinsically hold the drawbacks of flammability, leakage, and electrochemical instability, which triggers severe safety issues, especially in large-scale energy storage systems.^{15–19}

To effectively solve the safety issues of LIBs, all-solid-state LIBs (ASSLIBs) using lithium borohydrides as the electrolytes have been developed toward practical application of metal hydrides.²⁰⁻²³ LiBH₄ could not only act as the solid-state electrolyte due to its high Li-ion conductivity, which is comparable to that of liquid organic electrolytes, but also promote H⁻ conductivity owing to the hydrogen exchange effect between LiBH4 and MgH2, which is capable of facilitating the reversibility of metal hydrides for reversible Li storage.^{24–26} Unfortunately, due to the insulating nature of

Received: January 29, 2022 Accepted: May 9, 2022 Published: May 11, 2022

Figure 1. (a) Schematic illustration for the fabrication of space-confined MgH_2 and Mg_2NiH_4 into inactive Nd_2H_5 frameworks. (b) XRD patterns of the as-synthesized single-phase $Nd_4Mg_{80}Ni_8$ alloy and $Nd_4Mg_{80}Ni_8H_{x^*}$ (c) TEM image of single-phase $Nd_4Mg_{80}Ni_8$ alloy. The inset shows the corresponding selected area electron diffraction pattern of one single particle. (d) HRTEM image of the as-synthesized $Nd_4Mg_{80}Ni_8H_{x^*}$ (e) TEM image of the as-synthesized $Nd_4Mg_{80}Ni_8H_{x^*}$ (e) TEM image of the as-synthesized $Nd_4Mg_{80}Ni_8H_{x}$ and the corresponding EDS elemental mapping images of Ni, Mg, and Nd. (f,g) EDS elemental mapping images of ball-milled composite of the as-synthesized $Nd_4Mg_{80}Ni_8H_{x^*}$ LiBH₄, and Super P as the electrode.

 MgH_2 and the large volume change induced by the conversion reaction, rapid capacity decay could still be observed during the cycling charge and discharge process.²⁷ Although the Li storage performance of MgH_2 could be enhanced to a large extent with the assistance of catalysts,^{25,28,29} the intrinsic Li ion and electronic transport between the electrode and the electrolyte of ASSLIBs when using LiBH₄ as the solid-state electrolyte is greatly limited. As a result, it is necessary to develop an efficient and stable electron/ion dual-conductive pathway to boost the Li storage performance of metal hydrides.

Bearing these considerations in mind, herein, we report an efficient way to fabricate metal-hydride-based anodes with in situ built electron/ion dual-conductive frameworks. It is realized by the facile hydrogenation of single-phase $Nd_4Mg_{80}Ni_8$ alloys, leading to the in situ formation of MgH_2 and Mg_2NiH_4 that are uniformly space-confined by inactive Nd_2H_5 frameworks with high Li-ion and electron conductivity (Figure 1a). First, the as-synthesized nanocrystals of MgH_2 and Mg_2NiH_4 could offer short diffusion paths for electrons and Li ions, which promotes the Li storage reaction rate of metal hydrides. In addition, the homogeneous distribution of inactive Nd_2H_5 based on a molecular level could act as a robust and stable framework, which could effectively alleviate the large volume expansion of thus-confined MgH_2 and Mg_2NiH_4 and prevent the phase separation upon cycling, leading to good

preservation of the structural integrity of the whole electrode. More importantly, both theoretical calculation and experimental observation demonstrate that Nd_2H_5 is an electronic conductor with a Li-ion diffusion barrier that is much lower than that of MgH₂ and Mg₂NiH₄, and hence its uniform distribution could further facilitate electron and Li-ion transfer of MgH₂ and Mg₂NiH₄. In addition, both Nd₂H₅ and Mg₂NiH₄ play a catalytic role in effectively weakening Mg– H bonds of MgH₂, which could kinetically promote reversible charge and discharge performance of MgH₂. As a result, the hydrogenated Nd₄Mg₈₀Ni₈ electrode exhibits an impressive reversible capacity of 997 mAh g⁻¹ after 100 cycles at a high current density of 2038 mAh g⁻¹ with a high initial Coulombic efficiency of 92.2%.

RESULTS AND DISCUSSION

After a facile thermal annealing process, the X-ray diffraction (XRD) pattern (Figure 1b) demonstrates the uniform formation of the single-phase Nd₄Mg₈₀Ni₈ alloy, corresponding well with the selected area electron diffraction (SAED) pattern (Figure 1c). Scanning electron microscopy (SEM) measurement illustrates an average particle size of approximately 6.4 μ m for the as-prepared Nd₄Mg₈₀Ni₈ alloy (Figure S1a). Subsequently, the repeated hydrogenation and hydrogenation process of the thermally annealed alloys leads to in situ

Figure 2. (a) CV profiles of the $Nd_4Mg_{80}Ni_8H_x$ electrode for the initial three cycles at a scan rate of 0.025 mV s⁻¹. (b) Galvanostatic discharge-charge curves of the $Nd_4Mg_{80}Ni_8H_x$ electrode at 0.1C for the initial three cycles. (c) Cycling performance and (d) rate capability of the $Nd_4Mg_{80}Ni_8H_x$ electrode at 0.1C. (e) Cycling performance of the $Nd_4Mg_{80}Ni_8H_x$ electrode at 0.5 and 1C.

formation of MgH₂, Nd₂H₅, and Mg₂NiH₄ phases (denoted as $Nd_4Mg_{80}Ni_8H_x$), as verified by XRD results (Figure 1b). A high-resolution transmission electron microscopy (HRTEM) image of the hydrogenated Nd₄Mg₈₀Ni₈ (Figure 1d) illustrates that the thus-obtained hydrides exhibit distinct lattice fringe of 0.16, 0.27, and 0.19 nm, corresponding to the (211) plane of MgH₂, the (004) plane of Nd₂H₅, and the $(\overline{5}13)$ plane of Mg₂NiH₄, respectively, which provides additional evidence for the formation of MgH₂, Mg₂NiH₄, and Nd₂H₅. In addition, $Nd_4Mg_{80}Ni_8H_x$ delivers a H_2 desorption capacity of 5.64 wt %, indicating the complete hydrogenation of the Nd4Mg80Ni8 alloy (Figure S2). Interestingly, owing to the uniform distribution of Nd, Mg, and Ni inside the single-phase Nd₄Mg₈₀Ni₈ alloys at the atom level, the homogeneous distribution of the thus-formed nanocrystals of hydrides could be clearly observed with a size ranging from 5 to 10 nm, which could be further supported by the corresponding energy-dispersive spectroscopy (EDS) elemental mapping results (Figure 1e). As verified by SEM results, the average particle size of the as-synthesized Nd₄Mg₈₀Ni₈H_x is slightly larger than that of MgH_2 used in this work (Figure S1b,c). The

 $Nd_4Mg_{80}Ni_8H_x$ anode is subsequently fabricated by mixing $LiBH_4$ as the solid-state electrolyte and Super P as the electronic conductor with the size of the particles ranging from 5 to 25 μ m (Figure S1d), which are slightly decreased compared with the original hydrogenated $Nd_4Mg_{80}Ni_8$ particles (Figure S1b). Moreover, the elemental mapping results over the hydrogenated $Nd_4Mg_{80}Ni_8$ particles (Figure 1f,g) illustrate that the Nd, Mg, Ni, and B elements are uniformly distributed in the particles, validating a homogeneous distribution of the electroactive material, electrolyte, and conductive carbon after a simple mechanical milling process.

Cyclic voltammetry (CV) measurements reveal a strong reduction peak at 0.42 V during the first discharge process of the as-synthesized $Nd_4Mg_{80}Ni_8H_x$ (Figure 2a), which could be attributed to the reduction of MgH_2 and Mg_2NiH_4 with the formation of Mg and Mg_2Ni as the discharged products accompanied by the complete disappearance of MgH_2 and Mg_2NiH_4 , as verified by the XRD results (Figure 3a). It is interesting to note that Nd_2H_5 that is uniformly distributed inside $Nd_4Mg_{80}Ni_8H_x$ could still be observed after full lithiation upon discharging to 0.3 V (Figure 3a), which

Figure 3. (a) XRD patterns of the $Nd_4Mg_{80}Ni_8H_x$ electrode at various discharge and charge states: (I) fresh electrode, (II) after initial discharge process to 0.3 V, and (III) after the initial charge process to 1.0 V. HRTEM images of the $Nd_4Mg_{80}Ni_8H_x$ electrode at various states: (b) before cycling, (c) after the initial discharge to 0.3 V, and (c) after the initial charge to 1.0 V. Elemental mapping results of the $Nd_4Mg_{80}Ni_8H_x$ electrode at various states: (e) after the complete discharge to 0.3 V and (f) after complete charge to 1.0 V. Scanning TEM (STEM) images and the corresponding elemental mapping results of the MgH₂ electrode at various states: (g) pristine and (h) after complete discharge to 0.3 V. (i) Schematic illustration of the charge and discharge process of MgH₂ and $Nd_4Mg_{80}Ni_8H_x$ electrodes.

could serve as a structural support to alleviate the volume change of MgH₂ and Mg₂NiH₄ upon cycling. The corresponding HRTEM image (Figure 3c) illustrates distinct lattices fringed with 0.19, 0.24, and 0.27 nm, corresponding to the (102) planes of Mg_2Ni , the (101) planes of Mg, and the (200) planes of Nd₂H₅, respectively, in good agreement with the XRD results. Conversely, two anodic peaks located at 0.57 and 0.65 V in the first charge cycle could be ascribed to the regeneration of MgH₂ and Mg₂NiH₄, respectively, corresponding well with the XRD results (Figure 3a). As shown in Figure 3a, the characteristic diffraction peaks of MgH₂ and Mg₂NiH₄ emerge again with the presence of Nd₂H₅ upon charging to 1 V. After the complete delithiation process, the marked dspacings of the crystalline nanocrystals are measured to be 0.11, 0.27, and 0.22 nm, corresponding to the (222) plane of MgH_{2} , the (200) plane of Nd_2H_5 , and the (204) plane of

 Mg_2NiH_4 , respectively (Figure 3d). As a result, the reversible Li storage of the $Nd_4Mg_{80}Ni_8H_x$ electrode could be concluded as the reversible conversion reactions of MgH_2 and Mg_2NiH_4 as shown below.

$$MgH_2 + 2Li^+ + 2e^- \leftrightarrow Mg + 2LiH$$
(1)

$$Mg_2NiH_4 + 4Li^+ + 2e^- \leftrightarrow Mg_2Ni + 4LiH$$
 (2)

Except for the initial cycle, the CV curves in the subsequent cycles almost overlap without observation of an irreversible reaction, suggesting its good reversibility and high Coulombic efficiency. The electrochemical performance of $Nd_4Mg_{80}Ni_8H_x$ is further investigated using galvanostatic discharge–charge curves (Figure 2b). The small potential differences between the charge and discharge plateau provide additional evidence for the good electrochemical reversibility of $Nd_4Mg_{80}Ni_8H_x$ for

Figure 4. (a) Density of states of MgH₂, Mg₂NiH₄, and Nd₂H₅. (b) Charge conductivity of the Nd₄Mg₈₀Ni₈H_x and MgH₂ electrodes tested by chronoamperometry. Energy curves of lithiation process of MgH₂ (c) and Mg₂NiH₄ (d). The inset shows the corresponding schematic illustration. The energy barrier of Li diffusion on the surface of (e) Nd₂H₅, (f) Mg₂NiH₄, and (g) MgH₂. Green, silver, pink, orange, and purple spheres are Li, Ni, H, Mg, and Nd, respectively.

Li storage. The initial discharge capacity of the Nd₄Mg₈₀Ni₈H_x electrode reaches 1440 mAh g^{-1} , slightly higher than its theoretical value of the theoretical capacity (i.e., 1352 mAh g^{-1} calculated based on the following equation, $C_{(Nd_4Mg_{s0}Ni_8H_x)}$ = $C_{(MgH_2)} \times \%$ mass of MgH₂ + $C_{(Mg_2NiH_4)} \times \%$ mass of Mg₂NiH₄, which could be possibly induced by the slight alloying reaction of extra Mg with Li. More importantly, a reversible charge capacity of 1392 mAh g^{-1} could be obtained in the first cycle, corresponding to an initial Coulombic efficiency (ICE) of 92.2%, providing direct evidence for the high reversibility of the Nd₄Mg₈₀Ni₈H_x electrode. Although both discharge and charge capacities of the $Nd_4Mg_{80}Ni_8H_x$ electrode of the first cycle are much lower than those of the MgH₂ electrode due to the introduction of Nd and Ni with large weight, the initial Coulombic efficiency for the MgH₂ electrode is only 76.4%. More importantly, upon repeated processing for Li storage performance, the Nd₄Mg₈₀Ni₈H_x electrode delivers a high reversible capacity of 1191 mAh g⁻¹ after 100 cycles, corresponding to a capacity retention of 89.6%. By comparison, the capacity of the MgH₂ electrode rapidly decays to less than 300 mAh g^{-1} after only 18 cycles.

The rate capability of the $Nd_4Mg_{80}Ni_8H_x$ electrode, a key indicator for practical application of ASSLIBs, is subsequently investigated. As shown in Figure 2d, the $Nd_4Mg_{80}Ni_8H_x$ electrode exhibits an excellent rate performance, delivering an average reversible capacity of 1110 mAh g⁻¹ at 1C. Upon increasing the current density to 2C, a reversible specific capacity as high as 694 mAh g⁻¹ could still be achieved. By comparison, the reversible specific capacity of MgH₂ rapidly decreases to only 93 mAh g⁻¹ at 2C. More importantly, the reversible capacity returns to 1160 mAh g⁻¹ with nearly no capacity fading when the current density returns to 0.5C, which demonstrates the capability of the Nd₄Mg₈₀Ni₈H_r electrode toward fast Li-ion storage and extraction. Subsequently, the cycling performance of the Nd₄Mg₈₀Ni₈H_x electrode is investigated at the high current density of 0.5 and 1C. After 80 cycles, a high reversible capacity of 1087 mAh g^{-1} could still be obtained (Figure 2e), corresponding to an ultrahigh capacity retention of 97.2%. It should be noted that the reversible capacity of the $Nd_4Mg_{80}Ni_8H_x$ electrode is gradually increased in the initial six cycles, which could be possibly attributed to the activation of MgH₂ and Mg₂NiH₄ during the cycling. By comparison, the reversible capacity of the MgH₂ electrode fades rapidly to 200 mAh g^{-1} after only 10 cycles at a low current density of 0.5C. Impressively, upon increasing the current density to 1C, the initial reversible capacity of the Nd₄Mg₈₀Ni₈H_x electrode still reaches 1196 mAh g^{-1} with a high Coulombic efficiency of 96%, and this

Figure 5. (a) EIS profiles of the $Nd_4Mg_{80}Ni_8H_x$ after different cycles at 0.1C. (b) Diffusion coefficient of Li ions of the $Nd_4Mg_{80}Ni_8H_x$ and MgH_2 electrodes at different cycles at 0.1C. Cross-sectional SEM images of the $Nd_4Mg_{80}Ni_8H_x$ (c-e) and MgH_2 (f-h) electrodes before and after cycling at 1C.

value is well-preserved to be 997 mAh g⁻¹ after 100 cycles, which is among the best reported metal hydride anodes so far (Figure S3). More importantly, the Coulombic efficiencies of almost 100% are well-maintained during the whole charge and discharge process, which provides additional evidence for the excellent reversibility of the Nd₄Mg₈₀Ni₈H_x electrode. In strong contrast, the pristine MgH₂ electrode is damaged after only a few cycles and cannot maintain the charge–discharge cycle at such a high current rate.

As the hydrogenated Nd₄Mg₈₀Ni₈ alloys are mainly composed of Mg2NiH4 and Nd2H5 in addition to MgH2, their respective role in affecting the electrochemical performance of MgH₂ is investigated in detail (Figure S5). The assynthesized Mg₂NiH₄ and Nd₂H₅ are irregular in shape with comparable particle sizes ranging from 5 to 10 μ m (Figure S6a,b), and after ball milling with $LiBH_4$ and Super P, the asformed particles are pulverized to some extent but with comparable particle sizes (Figure S6c,d). The corresponding HRTEM images (Figure S6e,f) exhibit distinct lattice fringes of both Mg₂NiH₄ and MgH₂ inside the MgH₂ electrode after the introduction of Mg₂NiH₄ and both Nd₂H₄ and MgH₂ inside the MgH₂ electrode after the introduction of Nd_2H_5 , indicating the relatively uniform distribution of Mg₂NiH₄ and Nd₂H₅ in the corresponding electrodes after ball milling. Particularly, the initial reversible capacity of MgH_2 could be effectively increased to 1284 mAh g^{-1} with the addition of Mg_2NiH_4 and 1418 mAh g^{-1} with the addition of Nd₂H₅, respectively. More importantly, the MgH₂ electrode delivers a reversible capacity of 871 mAh g^{-1} after 100 cycles due to the introduction of Mg_2NiH_4 and 1027 mAh g⁻¹ after 86 cycles due to the introduction of Nd_2H_5 . In strong contrast, only a

negligible reversible capacity of 216 mAh g^{-1} could be obtained for pure MgH₂ electrodes after 50 cycles. This result directly demonstrates the positive role of Mg₂NiH₄ and Nd₂H₅ in improving the electrochemical performance of MgH₂.

In order to unravel the role of Mg_2NiH_4 and Nd_2H_5 in improving the electrochemical performance of MgH₂, the density of states (DOS) of MgH₂, Mg₂NiH₄, and Nd₂H₅ were first calculated (Figure 4a). It is interesting to note that, although both the MgH₂ and Mg₂NiH₄ are semiconductors, the band gap of Mg₂NiH₄ is much narrower than that of MgH₂, which demonstrates the superior diffusion of electrons in Mg₂NiH₄ in comparison with MgH₂. More importantly, the DOS of Nd_2H_5 crosses the Fermi level, indicating that Nd_2H_5 is a conductor, which could effectively promote the electronic conductivity of the thus-fabricated $Nd_4Mg_{80}Ni_8H_x$ electrode. This result could be further supported by measuring the direct current (DC) conductivity of the $Nd_4Mg_{80}Ni_8H_x$ electrode (Figure 4b). It is calculated that the DC conductivity of the $Nd_4Mg_{80}Ni_8H_x$ electrode approaches 0.99 S cm⁻¹ at 130 °C, which is nearly 2 times higher than that of the pure MgH₂ electrode (0.54 S cm⁻¹). This result provides direct evidence that the homogeneous distribution of Mg₂NiH₄ and Nd₂H₅ that is achieved through in situ hydrogenation of single-phase Nd₄Mg₈₀Ni₈ alloys is capable of effectively enhancing the electron transfer of the MgH₂ electrode, which contributes to enhancing the Li storage performance of MgH₂. Additionally, considering the electrochemical activity of Mg₂NiH₄ in participating in Li storage performance, the lithiation process of MgH₂ and Mg₂NiH₄ is investigated by thermodynamic calculations to further understand the enhanced electrochemical performance of Nd₄Mg₈₀Ni₈H_x. The calculated

formation energy of the reaction between Li and Mg₂NiH₄ is -1.96 eV (Figure 4c), much lower than that for the reaction between Li and MgH₂ (i.e., -1.04 eV) (Figure 4d), which indicates the thermodynamically favored lithiation process of Mg₂NiH₄ in comparison to that of MgH₂. Hence, during the lithiation process of the Nd₄Mg₈₀Ni₈H_x electrode, Mg₂NiH₄ will be first reduced with the formation of Mg₂Ni alloys as the discharged products, which would increase the electronic conductivity of the whole electrode and facilitate the subsequent discharge process of MgH₂. Conversely, Mg₂Ni alloys would be oxidized to form Mg₂NiH₄ after the charge process of Mg, and hence, it could also act as the electronic conductor to facilitate the reversible charge process of Mg.

In addition to the role of Mg₂NiH₄ and Nd₂H₅ in enhancing the electronic conductivity of the MgH₂ electrode, the energy barrier of Li diffusion on the surface of Nd₂H₅ (111) and Mg_2NiH_4 (001) is calculated to be as low as 0.29 eV (Figure 4e) and 0.34 eV (Figure 4f), respectively. Both of them are much lower than the energy barrier for the Li diffusion on the surface of MgH_2 (110) (Figure 4g), demonstrating that the homogeneous distribution of Mg₂NiH₄ and Nd₂H₅ also plays a key role in improving the Li-ion diffusion kinetics of the MgH₂ electrode induced by in situ hydrogenation of single-phase Nd₄Mg₈₀Ni₈ alloys. Interestingly, the energy barrier of Li diffusion on the surface of Mg (0001) and Mg₂Ni (010) that are formed after the lithiation process is calculated to be as low as 0.03 and 0.24 eV, respectively (Figure S7), and the energy barrier of Li diffusion on the surface of LiH (001) as verified by our previous publication is determined to be as low as 0.04 eV.³⁰ These results directly demonstrate that, in comparison with a high Li diffusion barrier, as observed in the delithiation process, the reversible lithiation process of Mg and Mg₂Ni is kinetically favored. Electrochemical impedance spectroscopy (EIS) is further conducted to experimentally understand the Li-ion conductivity of the $Nd_4Mg_{80}Ni_8H_r$ electrode. The semicircle in the medium- and high-frequency region is attributed to the charge transfer resistance between the cathode $(Nd_4Mg_{80}Ni_8H_x)$ /anode (Li) and the solid electrolyte (LiBH₄), and the slope line in the low-frequency region is a typical Warburg behavior, corresponding to the Li-ion diffusion kinetics of the electrode. As shown in Figure 5a, the initial semicircle of the Nd₄Mg₈₀Ni₈H_r electrode is obviously smaller than that of the MgH₂ electrode, indicating a low electron transfer resistance at the electrode/electrolyte interface of the former electrode. In addition, the slope of the line at the frequency region for the Nd₄Mg₈₀Ni₈H_x electrode is larger than that of the MgH₂ electrode, indicating a higher lithium-ion diffusion rate of Nd₄Mg₈₀Ni₈H_x electrode. The Li ion diffusion coefficient (D_{Li}) of the Nd₄Mg₈₀Ni₈H_x electrode (Figure 5b) at its open potential state is calculated to be $1.83 \times$ 10^{-9} cm² s⁻¹, almost 5 orders of magnitude higher than that of the MgH₂ electrode $(2.48 \times 10^{-14} \text{ cm}^2 \text{ s}^{-1})$, which directly demonstrates the significant enhancement of Li-ion diffusion kinetics due to the uniform distribution of Mg2NiH4 and Nd_2H_5 with a Li-ion diffusion barrier lower than that of MgH_{24} corresponding well with the theoretical calculation results. Interestingly, the uniform distribution of Mg₂NiH₄ and MgH₂ is well-maintained after repeated Li storage performance of the $Nd_4Mg_{80}Ni_8H_x$ electrode, which could be attributed to the positive role of the inactive Nd₂H₅ for Li storage upon cycling in preserving the structural stability of the whole electrode (Figure 3b–f). It could effectively stabilize the effect of Nd_2H_5 and Mg₂NiH₅ in promoting the electron and Li-ion

conductivity of the whole electrode and hence effectively improve the reversibility of the MgH₂ electrode with high specific capacity. In addition, it is noticed that, in addition to the superior electron and Li-ion conductivity of Mg₂NiH₄ compared to those of MgH₂ (Figure 4a,c,d,f,g), which could kinetically facilitate the Li storage performance of Mg₂NiH₄, the average length of Mg–H bonds in Mg₂NiH₄ reaches 2.02 Å (Figure S8a,b), which is much larger than that of MgH₂ (i.e., 1.71 Å). It indicates the much weaker Mg-H bonds of Mg₂NiH₄ compared those of MgH₂ due to the thermodynamic destabilization effect,^{31,32} which could further thermodynamically promote the reversible Li storage performance of Mg₂NiH₄. Induced by this thermodynamic and kinetic enhancement, a high reversible capacity of 652 mAh g^{-1} ¹) could be achieved for Mg₂NiH₄ at 0.5C (1C = 960 mA g⁻ after 75 cycles with a capacity retention as high as 92% (Figure S9a). Moreover, even at a high current density of 1C, Mg₂NiH₄ is still capable of delivering a high reversible capacity of 602 mAh g^{-1} after 100 cycles with a capacity retention of 85% (Figure S9a), indicating the excellent cycling stability of Mg₂NiH₄, which could be further supported by homogeneous distribution of Mg_2NiH_4 after 50 cycles at 1C (Figure S9b,c). Therefore, the relatively stable structure of Mg₂NiH₄ could also contribute to suppressing the phase separation of MgH₂ during the cycling charge and discharge process. By comparison, clear aggregation of Mg could be observed for the pure MgH₂ electrode after the initial discharge process in the elemental mapping results (Figure 3g,h), which indirectly confirms the obvious phase separation between Mg and LiH, leading to the rapid capacity degradation of the MgH₂ electrode (Figure 3i).

In addition, it is interesting to note that the MgH₂ electrode with the introduction of both Mg₂NiH₄ and Nd₂H₅ delivers a discharge capacity of 621 and 430 mAh g⁻¹ at 1 and 1.5C, respectively, which is 51 and 75% higher than that of the MgH_2 electrode with the introduction of Mg_2NiH_4 only (Figure S5b). This result provides further evidence for the effective role of Nd₂H₅ with high electron and Li-ion conductivity in enhancing the Li storage performance of MgH₂, especially at high current densities. However, the difference between the MgH₂ electrode modified by both Mg₂NiH₄ and Nd₂H₅ and the MgH₂ electrode modified by Mg₂NiH₄ only is actually small at a low current density of 0.5C. Therefore, in addition to considering the role of the electron and Li-ion conductivity of Nd₂H₅, the catalytic effect of Mg₂NiH₄ and Nd₂H₅ in enhancing the electrochemical property of MgH₂ is evaluated. Theoretical calculations based on density functional theory (DFT) demonstrate that two Mg-H bonds of the pristine MgH₂ monomer have an equal length of 1.71 Å. By comparison, the average length of Mg-H bonds in the MgH₂ on the surface of Nd₂H₅ and Mg₂NiH₄ is increased to 1.86 and 1.94 Å, respectively (Figure S8c,d). This result indicates that both Nd2H5 and Mg2NiH4 are capable of weakening Mg-H bonds of MgH₂, and Mg₂NiH₄ is more effective in weakening Mg-H bonds. This result could be further supported by their corresponding H₂ desorption tests (Figure S8e), which demonstrate that the H_2 desorption temperature of MgH₂ is significantly reduced under the catalysis of both Mg₂NiH₄ and Nd₂H₅. Particularly, the onset temperature for the H₂ desorption from MgH₂ reaches approximately 360 °C. In strong contrast, the onset temperature for the H₂ desorption of MgH₂ under the catalysis of Mg₂NiH₄ and Nd₂H₅ is significantly reduced to 196 and 290

°C, respectively, which is 164 and 70 °C lower than that of pure MgH₂. These results directly demonstrate the catalytic role of Mg₂NiH₄ and Nd₂H₅ in effectively weakening of Mg– H bonds, which hence could promote reversible Li storage performance of MgH₂. Considering the comparable mechanism of H₂ desorption and absorption of MgH₂ with its lithiation and delithiation process,^{12,24} the catalytic role of either Mg₂NiH₄ or Nd₂H₅ could kinetically promote the lithiation and delithiation performance of MgH₂, resulting in an excellent electrochemical performance.

To our best knowledge, since Li ions and electrons are transported entirely in the solid phase of the ASSLIBs, the interfacial contact between solid-state electrolyte and electrodes is one of the primary factors that affects the electrochemical performance of all-solid-state batteries.³³⁻³⁶ Therefore, the cross-sectional SEM images of Nd₄Mg₈₀Ni₈H₂|LiBH₄ and MgH₂|LiBH₄ at their initial state and after cycling are detected, which illustrates that the interfacial contact between the MgH₂ electrode and the solid electrolyte at the initial state (Figure 5f) is comparable to that of $Nd_4Mg_{80}Ni_8H_x$ electrode (Figure 5c). The continuous appearance of pores and cracks, however, could be clearly observed at the interfacial area between MgH₂ and LiBH₄ and inside the cathode upon the proceeding of the cycling process (Figure 5g,h), which could be attributed to the large volume change of MgH₂ and thusinduced phase separation during repeated lithiation and delithiation processes, leading to poor interfacial contact that hinders the electronic and Li-ion conductivity (Figure 3i). As a result, the charge transfer resistance (R_{ct}) and the SEI resistance (R_{SEI}) in the MgH₂ anode is significantly increased to 24.66 and 26.18 Ω , respectively, after only one cycle of the charge and discharge process according to the EIS profiles, which contributes to the significant capacity degradation of the MgH₂ electrode. By comparison, taking advantage of the role of the inactive Nd₂H₅ with uniform distribution on a molecular level in preserving the structural stability of the whole electrode (Figure 3i), both the structure of the $Nd_4Mg_{80}Ni_8H_x$ electrode and the interfacial contact between the Nd₄Mg₈₀Ni₈H_x electrode and the solid electrolyte are well-preserved after 20 cycles at 1C (Figure 5e,d). Moreover, the surface of the Nd₄Mg₈₀Ni₈ electrode is still smooth without any obvious cracks after cycling (Figure S10a,b), whereas clear holes and cracks could be observed on the surface of the MgH₂ electrode (Figure S10c,d). This result indirectly demonstrates that the homogeneous distribution of Nd₂H₅ frameworks could serve as a robust host to restrain the volume change effectively of MgH₂ and Mg₂NiH₄ during the cycling, which leads to a significantly improved cycling performance. As a result, both $R_{\rm ct}$ and $R_{\rm SEI}$ are well-preserved and are even lowered to some extent due to the structural activation process during the first cycle of the charge and discharge process, which provides additional evidence for the stable interfacial stability of the Nd₄Mg₈₀Ni₈H_x electrode. In addition, owing to the wellpreserved structural integrity induced by the uniform spaceconfinement role of Nd₂H₅ frameworks with high Li-ion and electron conductivity, the Li-ion diffusion coefficient of the $Nd_4Mg_{80}Ni_8H_x$ electrode remains approximately 5 orders of magnitude higher than that of the MgH₂ electrode upon cycling, leading to excellent cycling stability.

CONCLUSION

In conclusion, we report the fabrication of space-confined MgH_2 and Mg_2NiH_4 by the uniformly distributed Nd_2H_5

frameworks with high Li-ion and electron conductivity through the facile hydrogenation of single-phase Nd₄Mg₈₀Ni₈ alloys. The in situ formation of MgH₂ and Mg₂NiH₄ nanocrystals could not only shorten Li-ion and electron diffusion pathways of the whole electrode but also relieve the thus-induced stress from the large volume change of metal hydrides. The homogeneous distribution of inactive Nd₂H₅ frameworks based on a molecular level, on the other hand, could act as a structural host that could effectively alleviate the large volume expansion and suppress the phase separation of thus-confined MgH₂ and Mg₂NiH₄. More importantly, the uniform distribution of Nd₂H₅, which is theoretically and experimentally demonstrated to be an electronic conductor with a Li-ion diffusion barrier that is much lower than that of MgH₂ and Mg₂NiH₄, is capable of effectively facilitating the electron and Li-ion transfer of MgH₂ and Mg₂NiH₄. Moreover, both Nd₂H₅ and Mg₂NiH₄ are capable of catalytically weakening Mg-H bonds of MgH₂, which hence kinetically promote the reversible lithiation and delithiation reaction of MgH₂. As a result, the space-confined MgH₂ and Mg₂NiH₄ into inactive Nd₂H₅ frameworks deliver a reversible capacity of 997 mAh g⁻ after 100 cycles at a high current density of 2038 mA g^{-1} . This work provides a promising strategy to improve the Li storage performance of various metal hydrides by building Liion and electron conductive frameworks, and it stimulates the interest in realizing high-performance metal-hydride-based ASSLIBs for practical applications.

MATERIALS AND METHODS

Synthesis of Nd₄Mg₈₀Ni₈H_x. The single-phase Nd₄Mg₈₀Ni₈ alloys were synthesized using a medium-frequency induction furnace with blocks of Nd (Sigma, \geq 99.99 wt %), Mg (Sigma, \geq 99.99 wt %), and Ni (Sigma, \geq 99.99 wt %) as starting materials. After being ground three times, the Nd₄Mg₈₀Ni₈ powder was annealed at 400 °C for 2 days, followed by quenching in ice–water. The as-synthesized Nd₄Mg₈₀Ni₈ alloys were heated to 350 °C for 2 h under 47 bar of H₂ toward the activation and hydrogenation.

Synthesis of Nd_2H_5 Powder. Nd_2H_5 was fabricated via the hydrogenation of commercial Nd powders (500 mg, Sigma, \geq 99.99 wt %). Typically, Nd powders were heated to 300 °C for 2 h under a hydrogen pressure of 60 bar to obtain Nd_2H_5 powders.

Synthesis of Mg₂NiH₄ Powder. In a typical process, the commercial Mg and Ni powders with a molar ratio of 2:1 were mixed by ball milling at 300 rpm for 3 h under an Ar atmosphere. Subsequently, the thus-milled composite was heated to 400 °C for 2 h under a hydrogen pressure of 70 bar to obtain Mg₂NiH₄ powders.

Cell Assembly. The schematic illustration of the preparation of the electrode and the operating cell is shown in Figure S13. The working electrode was prepared by ball milling of the metal hydrides, LiBH₄ (Acros, \geq 95%), and conductive carbon (Super P) with a mass ratio of 1:1:2 using a planetary ball mill (QM-3SP4, Nanjing) at 400 rpm for 12 h. First, 72 mg of LiBH₄ powder was pressed at 400 MPa, followed by the addition of 4 mg of the electrode material, to obtain a cathode/electrolyte bilayer pellet. A Li foil disk of 9 mm diameter was added on the bottom of the solid electrolyte to serve as the anode. All of the cells were fabricated using homemade test cells, in which the battery components were placed into a polyetheretherketone (PEEK) cylinder and pressed between two stainless steel pistons serving as electrical contacts, and all sample handling and cell assembly were performed in a glovebox (Mikrouna, Shanghai) under an Ar atmosphere (H₂O and O₂ <1 ppm).

Material Characterization. The phase structure of all of the samples was investigated by X-ray diffraction (D8 Advance, Bruker AXS Corporation) with Cu K α radiation (λ = 1.5418 Å). The morphology of samples was observed by field emission scanning electron microscopy (JEOL 7500FA, Tokyo, Japan) and transmission

electron microscopy (JEOL 2011F) coupled with energy-dispersive spectrometry.

Electrochemical Measurements. All electrochemical tests were measured at 130 °C. The ASSLIBs with Nd4Mg80Ni8H, as the electrode material were galvanostatically charged and discharged in a potential range from 0.3 to 1.0 V vs Li⁺/Li at 0.1C (1C = 2038 mA g^{-1}) using Neware battery test systems (CT-3008W-5 V20A-S4, Shenzhen, China). The lower-limit cyclic potential of 0.3 V was selected to avoid the irreversible formation of Li-Mg alloys below 0.3 V, which would result in significant capacity degradation during cycling.^{8,37} The specific capacities of the electrode were measured based on the mass of Nd4Mg80Ni8Hx. Cyclic voltammetry curves were measured at a scan rate of 0.025 mV s⁻¹ in the potential range of 0.3– 1.0 V (vs Li⁺/Li), and electrochemical impedance spectroscopy curves were measured in a frequency range from 100 kHz to 100 mHz. In the chronoamperometry (CA) measurement, 100 mg of electrode composite powder was added into the PEEK cylinder, followed by pressing with a pressure of 400 MPa. Thereafter, stainless steel sheets were used on both sides of the pellet as electrodes. The measurement was conducted with a constant voltage of 10 mV. The resistance and the conductivity were obtained by the following equations:

$$R = \frac{V}{I} \tag{3}$$

$$\sigma = \frac{d}{AR} \tag{4}$$

where I is the current obtained by CA, d is the thickness, and A is the area of the electrolyte pellet. CV and CA measurements were performed using a CHI-660E electrochemistry workstation. Galvano-static intermittent titration technique (GITT) measurements were carried out with a negative current pulse at 0.1C for 1800 s, followed by relaxation for 1800 s. This sequence of discharge pulse followed by a relaxation time was repeated until the potential reached 0.3 V.

Computational Methods. Density functional theory calculations were carried out using projector-augmented wave (PAW) method as implemented in Vienna ab initio simulation package (VASP).^{38–40} A generalized gradient approximation (GGA) of the Perdew–Burke–Ernzerhof (PBE) functional was employed to describe the exchange-correlation interaction.⁴¹ The DFT-D3 method was also adopted to evaluate the van der Waals interactions.⁴² In all calculations, the energy cutoff was set as 500 eV, and Γ -centered *k*-point mesh with mesh point spacing less than 0.05 Å⁻¹ was applied. The structures were relaxed until the forces and total energy on all atoms were converged to less than 0.05 eV Å⁻¹ and 1 × 10⁻⁵ eV. To obtain the energy curves of the lithiation processes, the formation energy (*E_t*) was calculated as follows:

$$E_{\rm f} = \sum E_{\rm product} - \sum E_{\rm reactant} \tag{5}$$

where $E_{\rm product}$ and $E_{\rm reactant}$ are the total energy of every product and reactant in the lithiation reaction formula, respectively. A reaction with lower $E_{\rm f}$ is more likely to occur thermodynamically. The diffusion of Li on the surface of MgH₂, Mg₂NiH₄, and Nd₂H₅ is simulated using the climbing-image nudged elastic band (CI-NEB) method.^{43,44}

Hydrogen Storage Measurements. Temperature-programmed desorption (TPD), isothermal dehydrogenation tests, and the corresponding hydrogenation process of the as-prepared samples were conducted on a home-built high-pressure gas sorption apparatus, which was carefully calibrated by adopting LaNi₅ as a reference sample in terms of hydrogen storage capacity and guaranteed an accuracy of $\pm 1\%$. Approximately 20 mg of as-prepared sample was used for each test. Temperature-programmed desorption tests were performed at a heating rate of 5 °C min⁻¹. Both TPD and isothermal dehydrogenation processes were conducted under an initial pressure of <0.001 MPa.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsnano.2c01038.

Additional SEM, XRD, and electrochemical data; comparison of electrochemical performance; hydrogen desorption performance of metal hydrides (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Xuebin Yu Department of Materials Science, Fudan University, Shanghai 200433, China; o orcid.org/0000-0002-4035-0991; Email: yuxuebin@fudan.edu.cn
- Guanglin Xia Department of Materials Science, Fudan University, Shanghai 200433, China; Octid.org/0000-0002-3493-4309; Email: xiaguanglin@fudan.edu.cn

Authors

- **Panyu Gao** Department of Materials Science, Fudan University, Shanghai 200433, China
- Shunlong Ju Department of Materials Science, Fudan University, Shanghai 200433, China
- Zipeng Liu State Key Laboratory of Advanced Special Steels & Shanghai Key Laboratory of Advanced Ferrometallurgy & School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- **Dalin Sun** Department of Materials Science, Fudan University, Shanghai 200433, China

Complete contact information is available at: https://pubs.acs.org/10.1021/acsnano.2c01038

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was partially supported by the National Key R&D Program of China (No. 2020YFA0406204), National Science Fund for Distinguished Young Scholars (51625102), the National Natural Science Foundation of China (51971065, 51901045, U2130208), the Science and Technology Commission of Shanghai Municipality (No. 21ZR1407500), the Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-07-E00028), and the Programs for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

REFERENCES

(1) Bruce, P. G.; Scrosati, B. J.; Tarascon, M. Nanomaterials for Rechargeable Lithium Batteries. *Angew. Chem., Int. Ed.* **2008**, *47*, 2930–2946.

(2) Yang, Y.; Okonkwo, E. G.; Huang, G. Y.; Xu, S. M.; Sun, W.; He, Y. H. On the Sustainability of Lithium Ion Battery Industry-A Review and Perspective. *Energy Stor. Mater.* **2021**, *36*, 186–212.

⁽³⁾ Fang, Y. J.; Zeng, Y. X.; Jin, Q.; Lu, X. F.; Luan, D. Y.; Zhang, X. T.; Lou, X. W. Nitrogen Doped Amorphous Zn-Carbon Multichannel Fibers for Stable Lithium Metal Anodes. *Angew. Chem., Int. Ed.* **2021**, *60*, 8515–8520.

⁽⁴⁾ Jin, H. C.; Xin, S.; Chuang, C. H.; Li, W. D.; Wang, H. Y.; Zhu, J.; Xie, H. Y.; Zhang, T. M.; Wan, Y. Y.; Qi, Z. K.; Yan, W. S.; Lu, Y. R.; Chan, T. S.; Wu, X. J.; Goodenough, J. B.; Ji, H. X.; Duan, X. F. Black Phosphorus Composites with Engineered Interfaces for High-Rate High-Capacity Lithium Storage. *Science* **2020**, *370*, 192.

(5) Oumellal, Y.; Zlotea, C.; Bastide, S.; Cachet-Vivier, C.; Leonel, E.; Sengmany, S.; Leroy, L.; Aymard, L.; Bonnet, J. P.; Latroche, M. Bottom-Up Preparation of MgH_2 Nanoparticles with Enhanced Cycle Life Stability During Electrochemical Conversion in Li-Ion Batteries. *Nanoscale* **2014**, *6*, 14459–14466.

(6) Zhong, S. L.; Ju, S. L.; Shao, Y. F.; Chen, W.; Zhang, T. F.; Huang, Y. Q.; Zhang, H. Y.; Xia, G. L.; Yu, X. B. Magnesium Hydride Nanoparticles Anchored on MXene Sheets as High Capacity Anode for Lithium-Ion Batteries. *J. Energy Chem.* **2021**, *62*, 431–439.

(7) Cano-Banda, F.; Gallardo-Gutierrez, A.; Luviano-Ortiz, L.; Hernandez-Guerrero, A.; Jain, A.; Ichikawa, T. High Capacity MgH₂ Composite Electrodes for All-Solid-State Li-Ion Battery Operating at Ambient Temperature. *Int. J. Hydrog. Energy* **2021**, *46*, 1030–1037.

(8) Oumellal, Y.; Rougier, A.; Nazri, G. A.; Tarascon, J. M.; Aymard, L. Metal Hydrides for Lithium-Ion Batteries. *Nat. Mater.* **2008**, *7*, 916–921.

(9) Cheng, Q. H.; Sun, D. L.; Yu, X. B. Metal Hydrides for Lithium-Ion Battery Application: A Review. *J. Alloys Compd.* **2018**, *769*, 167– 185.

(10) Aymard, L.; Oumellal, Y.; Bonnet, J. P. Metal Hydrides: An Innovative and Challenging Conversion Reaction Anode for Lithium-Ion Batteries. *Beilstein J. Nanotechnol.* **2015**, *6*, 1821–1839.

(11) Zhang, B. P.; Si, Y. S.; Gu, Q. F.; Chen, M.; Yu, X. B. Hydrangea-Shaped 3D Hierarchical Porous Magnesium Hydride-Carbon Framework with High Rate Performance for Lithium Storage. *ACS Appl. Mater. Interfaces* **2019**, *11*, 28987–28995.

(12) Zeng, L.; Kawahito, K.; Ikeda, S.; Ichikawa, T.; Miyaoka, H.; Kojima, Y. Metal Hydride-Based Materials Towards High Performance Negative Electrodes for All-Solid-State Lithium-Ion Batteries. *Chem. Commun.* **2015**, *51*, 9773–9776.

(13) Brutti, S.; Meggiolaro, D.; Paolone, A.; Reale, P. Magnesium Hydride as Negative Electrode Active Material in Lithium Cells: A Review. *Mater. Today Energy* **2017**, *3*, 53–59.

(14) Zhang, B. P.; Xia, G. L.; Sun, D. L.; Fang, F.; Yu, X. B. Magnesium Hydride Nanoparticles Self-Assembled on Graphene as Anode Material for High-Performance Lithium-Ion Batteries. *ACS Nano* **2018**, *12*, 3816–3824.

(15) Chen, S. M.; Wen, K. H.; Fan, J. T.; Bando, Y. S.; Golberg, D. Progress and Future Prospects of High-Voltage and High-Safety Electrolytes in Advanced Lithium Batteries: From Liquid to Solid Electrolytes. *J. Mater. Chem. A* **2018**, *6*, 11631–11663.

(16) Fan, L.; Wei, S. Y.; Li, S. Y.; Li, Q.; Lu, Y. Y. Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. *Adv. Energy Mater.* **2018**, *8*, 1702657.

(17) Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. Fundamentals of Inorganic Solid-State Electrolytes for Batteries. *Nat. Mater.* **2019**, *18*, 1278–1291.

(18) Duchêne, L.; Remhof, A.; Hagemann, H.; Battaglia, C. Status and Prospects of Hydroborate Electrolytes for All-Solid-State Batteries. *Energy Stor. Mater.* **2020**, *25*, 782–794.

(19) Yang, X. F.; Adair, K. R.; Gao, X. J.; Sun, X. L. Recent Advances and Perspectives on Thin Electrolytes for High-Energy-Density Solid-State Lithium Batteries. *Energy Environ. Sci.* **2021**, *14*, 643–671.

(20) Matsuo, M.; Orimo, S. Lithium Fast-Ionic Conduction in Complex Hydrides: Review and Prospects. *Adv. Energy Mater.* 2011, 1, 161–172.

(21) Zettl, R.; Gombotz, M.; Clarkson, D.; Greenbaum, S. G.; Ngene, P.; de Jongh, P. E.; Wilkening, H. M. R. Li-Ion Diffusion in Nanoconfined LiBH₄-LiI/Al₂O₃: From 2D Bulk Transport to 3D Long-Range Interfacial Dynamics. *ACS Appl. Mater. Interfaces* **2020**, *12*, 38570–38583.

(22) Liu, H.; Ren, Z. H.; Zhang, X.; Hu, J. J.; Gao, M. X.; Pan, H. G.; Liu, Y. F. Incorporation of Ammonia Borane Groups in the Lithium Borohydride Structure Enables Ultrafast Lithium Ion Conductivity at Room Temperature for Solid-State Batteries. *Chem. Mater.* **2020**, *32*, 671–678.

(23) Zhang, T. F.; Wang, Y. M.; Song, T.; Miyaoka, H.; Shinzato, K.; Miyaoka, H.; Ichikawa, T.; Shi, S. Q.; Zhang, X. G.; Isobe, S.; et al. Ammonia, A switch for Controlling High Ionic Conductivity in Lithium Borohydride Ammoniates. *Joule* 2018, 2, 1522–1533. (24) Dao, A. H.; Berti, N.; López-Aranguren, P.; Zhang, J. X.;

Cuevas, F.; Jordy, C.; Latroche, M. Electrochemical Properties of MgH_2 -TiH₂ Nanocomposite as Active Materials for All-Solid-State Lithium Batteries. *J. Power Sources* **2018**, *397*, 143–149.

(25) Huang, L.; Aymard, L.; Bonnet, J. P. MgH₂-TiH₂ Mixture As an Anode for Lithium-Ion Batteries: Synergic Enhancement of the Conversion Electrode Electrochemical Performance. *J. Mater. Chem. A* **2015**, *3*, 15091–15096.

(26) El Kharbachi, A.; Uesato, H.; Kawai, H.; Wenner, S.; Miyaoka, H.; Sørby, M. H.; Fjellvag, H.; Ichikawa, T.; Hauback, B.ør. C. MgH₂-CoO: A Conversion-Type Composite Electrode for LiBH₄-Based All-Solid-State Lithium Ion Batteries. *RSC Adv.* **2018**, *8*, 23468–23474. (27) Xia, G. L.; Zhang, B. P.; Chen, X. W.; Sun, D. L.; Guo, Z. P.; Liang, F. X.; Zou, W. D.; Yang, Z. Z.; Yu, X. B. Molecular-Scale Functionality on Graphene to Unlock the Energy Capabilities of Metal Hydrides for High-Capacity Lithium-Ion Batteries. *ACS Nano* **2018**, *12*, 8177–8186.

(28) Ikeda, S.; Ichikawa, T.; Kawahito, K.; Hirabayashi, K.; Miyaoka, H.; Kojima, Y. Anode Properties of Magnesium Hydride Catalyzed with Niobium Oxide for an All Solid-State Lithium-Ion Battery. *Chem. Commun.* **2013**, *49*, 7174–7176.

(29) Cuevas, F.; Korablov, D.; Latroche, M. Synthesis, Structural and Hydrogenation Properties of Mg-Rich MgH_2 -Ti H_2 Nanocomposites Prepared By Reactive Ball Milling Under Hydrogen Gas. *Phys. Chem. Chem. Phys.* **2012**, *14*, 1200–1211.

(30) Zhang, H. Y.; Ju, S. L.; Xia, G. L.; Sun, D. L.; Yu, X. B. Dendrite-Free Li-Metal Anode Enabled by Dendritic Structure. *Adv. Funct. Mater.* **2021**, *31*, 2009712.

(31) Kim, D.; Zhang, K.; Cho, M.; Kang, Y. M. Critical Design Factors for Kinetically Favorable P-Based Compounds Toward Alloying With Na Ions for High-Power Sodium-Ion Batteries. *Energy Environ. Sci.* **2019**, *12*, 1326–1333.

(32) Song, K. M.; Liu, C. T.; Mi, L. W.; Chou, S. L.; Chen, W. H.; Shen, C. Y. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries. *Small* **2021**, *17*, 1903194.

(33) Tan, D. H. S.; Banerjee, A.; Chen, Z.; Meng, Y. S. From Nanoscale Interface Characterization to Sustainable Energy Storage Using All-Solid-State Batteries. *Nat. Nanotechnol.* **2020**, *15*, 170–180.

(34) Zhao, C. Z.; Zhao, B. C.; Yan, C.; Zhang, X. Q.; Huang, J. Q.; Mo, Y. F.; Xu, X. X.; Li, H.; Zhang, Q. Liquid Phase Therapy to Solid Electrolyte-Electrode Interface in Solid-State Li Metal Batteries: A Review. *Energy Stor. Mater.* **2020**, *24*, 75–84.

(35) Wang, S.; Sun, Q. F.; Peng, W. X.; Ma, Y.; Zhou, Y.; Song, D. W.; Zhang, H. Z.; Shi, X. X.; Li, C. L.; Zhang, L. Q. Ameliorating the Interfacial Issues of All-Solid-State Lithium Metal Batteries by Constructing Polymer/Inorganic Composite Electrolyte. *J. Energy Chem.* **2021**, *58*, 85–93.

(36) Chen, X. Z.; He, W. J.; Ding, L. X.; Wang, S. Q.; Wang, H. H. Enhancing Interfacial Contact in All Solid State Batteries with a Cathode-Supported Solid Electrolyte Membrane Framework. *Energy Environ. Sci.* **2019**, *12*, 938–944.

(37) Brutti, S.; Mulas, G.; Piciollo, E.; Panero, S.; Reale, P. Magnesium Hydride as a High Capacity Negative Electrode for Lithium Ion Batteries. *J. Mater. Chem.* **2012**, *22*, 14531–14537.

(38) Kresse, G.; Hafner, J. Ab initio Molecular Dynamics for Liquid Metals. *Phys. Rev. B* **1993**, *47*, 558–561.

(39) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169–11186.

(40) Blochl, P.; Blöchl, E.; Blöchl, P. Projected Augmented-Wave Method. *Phys. Rev. B* 1994, 50, 17953–17979.

(41) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

(42) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate ab initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. *J. Chem. Phys.* 2010, 132, 154104.

(43) Paier, J.; Hirschl, R.; Marsman, M.; Kresse, G. The Perdew-Burke-Ernzerhof Exchange-Correlation Functional Applied to the G2-1 Test Set Using a Plane-Wave Basis Set. J. Chem. Phys. 2005, 122, 234102.

(44) Heyden, A.; Bell, A. T.; Keil, F. J. Efficient methods for finding transition states in chemical reactions: Comparison of Improved Dimer Method and Partitioned Rational Function Optimization Method. J. Chem. Phys. 2005, 123, 224101.

Recommended by ACS

Experimental Investigation and First-Principles Calculations of a Ni₃Se₄ Cathode Material for Mg-Ion **Batteries**

Luyao Wei, Yingjin Wei, et al. FEBRUARY 07, 2020 ACS APPLIED MATERIALS & INTERFACES

$MoS_2/CN/Fe_{0.95}S_{1.05}$ with a Hierarchical Architecture as a Long-Durable Anode for Sodium Ion Batteries

Hongyi Chen, Qiming Liu, et al. OCTOBER 21, 2021 ACS APPLIED ENERGY MATERIALS

READ 🗹

READ 🗹

Influence Mechanism of Mg²⁺ Doping on Electrochemical Properties of LiFePO₄ Cathode **Materials**

Xingzhong Liu, Fuliang Zhu, et al. JUNE 16, 2022

ACS APPLIED ENERGY MATERIALS

READ 🗹

Engineering the Proton-Substituted HNaV₆O₁₆·4H₂O Cathode for the Ultrafast-Charging Zinc Storage

Leyuan Shi, Linlin Zhang, et al. FEBRUARY 10, 2022 ACS SUSTAINABLE CHEMISTRY & ENGINEERING READ 🗹

Get More Suggestions >