

Water-Stabilized Vanadyl Phosphate Monohydrate Ultrathin Nanosheets toward High Voltage Al-Ion Batteries

Jiening Zheng, Tian Xu, Guanglin Xia, Wen-Gang Cui, Yaxiong Yang, and Xuebin Yu*

Al ion batteries (AIBs) are attracting considerable attention owing to high volumetric capacity, low cost, and high safety. However, the strong electrostatic interaction between Al³⁺ and host lattice leads to discontented cycling life and inferior rate capability. Herein, a new strategy of employing water molecules contained VOPO₄·H₂O to boost Al³⁺ migration via the charge shielding effect of water is reported. It is revealed that VOPO₄·H₂O with water lubrication effect and smaller steric hindrance owns high capacity and fast Al³⁺ diffusion, while the loss of unstable water upon cycling leads to a rapid performance degradation. To address this problem, ultrathin VOPO₄·H₂O@MXene nanosheets are fabricated via the formed Ti-O-V bond between VOPO₄·H₂O and MXene. The MXene aided exfoliation results in enhanced V-Owater bond strength between H₂O and VOPO₄ that endows the obtained composite with strong water holding ability, contributing to the extraordinary cycling stability. Consequently, the VOPO₄·H₂O@MXene delivers a high discharge potential of 1.8 V and maintains discharge capacities of 410 and 374.8 mAh g⁻¹ after 420 and 2000 cycles at the current densities of 0.5 and 1.0 A g⁻¹, respectively. This work provides a new understanding of water-contained AIBs cathodes and vital guidance for developing high-performance AIBs.

1. Introduction

The requirements for rechargeable batteries with higher theoretical energy density, lower cost, and sustainability than the market dominated lithium ion batteries (LIBs) inspires further research enthusiasm to the development of post-LIBs systems.^[1] Rechargeable batteries involving multivalent-ion (e.g., Mg²⁺, Zn²⁺, Al³⁺, Ca²⁺) shuttling represent one of the promising successors and are envisioned to surpass the energy density of LIBs.^[2] As the most abundant metallic element, Al has received growing attention due to its high capacity, low cost, high safety, easy operation, and environmental benignity.^[3] Therefore, Al ion batteries (AIBs) have been regarded as attractive energy

J. Zheng, T. Xu, G. Xia, X. Yu Department of Materials Science Fudan University Shanghai 200433, China E-mail: yuxuebin@fudan.edu.cn W.-G. Cui, Y. Yang Institute of Science and Technology for New Energy Xi'an Technological University Xi'an 710021, China The ORCID identification number(s) for the author(s) of this article

can be found under https://doi.org/10.1002/smll.202207619.

DOI: 10.1002/smll.202207619

storage system, which would propel the substantial development of the energy storage technology.^[4] In order to design high energy density storage devices, the identifying of host materials with high performance, especially elevated work potential, is essential. Due to the high electronegativity of oxygen, the metal oxides own strong ionic chemical bonds, which consequently result in increased plateau voltages.^[5] Examples of such oxides owning potential high discharge voltages are amorphous V_2O_5 (≈ 0.9 V),^[6] MoO_2 (1.9 V),^[7] TiO₂ (~1.0 V)^[8] and so on. Despite their advantage in working potential, they usually suffer from low capacity, discontented cycling life, and inferior rate capability, which originate from the slow reaction kinetics caused by the strong Coulombic interaction between the trivalent Al³⁺ and oxide host lattice.^[9]

Previous researches have demonstrated that water molecules can be applied as "lubricant" to facilitate ions diffusion.^[10]

Typically, vanadyl phosphate dihydrate (VOPO₄·2H₂O) with a long intercalation chemistry history, has been recently developed as a potential cathode material for various alkali metalion batteries, meriting from its high redox reaction potential due to the strong inductive effect of [PO₄] tetrahedrons and the large interlayer space stemming from the interlayer water molecules.^[11] Moreover, the easier multivalent ions (Mg²⁺ and Zn^{2+}) intercalation into VOPO₄·2H₂O can take place with the aid of the water molecules.^[11e,12] The study of vanadyl phosphate hydrate as AIBs cathode was first reported in 2020 by Wang and co-workers via fabricating a VOPO4-graphene heterostructure.^[11f] Although an improved cycling performance originating from its zero-strain property is achieved, the potential high discharge plateau voltage and capacity of vanadyl phosphate hydrate are underutilized. In addition, the effect and mechanism of the bonded water molecule content and its stability on the aluminum storage behavior have not been systematically studied.

In this work, we select VOPO₄·2H₂O as a model cathode to reveal its Al^{3+} storage behaviors. As expected, the VOPO₄·2H₂O presents high discharge plateau and holds high potential Al^{3+} storage capacity. We further investigate the relationship between water content and electrochemical performance. Interestingly, our density functional theory (DFT) calculations results reveal that, compared with VOPO₄·2H₂O and VOPO₄, the VOPO₄·H₂O possesses the lowest Al^{3+} diffusion barrier and adsorption energy, which are unsurprisingly validated by the enhanced Al³⁺ storage performance. Although VOPO₄·H₂O is shown to be the most attractive cathode material, it suffers from inevitably capacity loss during continuous cycling, resulted from the structural and composition changes of VOPO₄·H₂O upon cycling. Besides, the VOPO₄·H₂O is sensitive to the moisture in the air and can easily transfer to VOPO₄·2H₂O. These obstacles motivate us to find an effective strategy to obtain VOPO₄·H₂O with high stability and insensitivity.

www.advancedsciencenews.com

It is well known that the surfaces of MXenes are terminated with numerous hydrophilic groups (named as T), such as -OH, -O, and -F, which can effectively bind with other materials through the formation of definite interactions, such as M-O-Ti (M = metal atoms), hydrogen bonding, and so on.^[13] This fancy property of MXene is expected to effectively trigger the hydrogen bonds fracture of the interlayer water in $VOPO_4 \cdot 2H_2O$ and leads to the escape of part of water molecules. Hence, heterostructured $VOPO_4 \cdot H_2O$ @MXene composite was fabricated by a simple mechanical stirring of bulk $VOPO_4 \cdot 2H_2O$ and MXene mixture. This MXene aided stripping strategy can exfoliate the bulk $VOPO_4 \cdot 2H_2O$ thoroughly and remove partial water molecules. Notably, the enhanced stripping degree induced by MXene facilitates the formation of rich oxygen vacancies, resulting in the shortened $V-O_{water}$ bonds that are confirmed

by the DFT calculations. This ingenious design contributes to the significant improvement on the stability of water molecules in VOPO₄·H₂O@MXene, which is ascertained by its obvious water loss hysteresis. Consequently, the VOPO₄·H₂O@MXene delivers high voltage plateau with tiny polarization, high reversible discharge capacity with long cycle life and favorable rate capability.

2. Results and Discussion

2.1. Synthesis, Characterization, and Electrochemical Tests of $VOPO_4$ nH₂O (n = 0, 1, 2)

Figure 1a exhibits the X-ray diffraction (XRD) pattern of $VOPO_4 \cdot 2H_2O$. All of the peaks can be indexed to $VOPO_4 \cdot 2H_2O$ (JCPDS No. 36-1472) with P4/n space group. The main (001) peak is located at 11.9°, reflecting that $VOPO_4 \cdot 2H_2O$ owns a large interlayer spacing of 0.74 nm. As displayed in the schematic structure (inset in Figure 1a), $VOPO_4 \cdot 2H_2O$ has the typical layered crystal structure consisting of vertex-sharing VO_6 octahedra linking to phosphate PO_4 tetrahedra with a ratio of 1:1. Between the $VOPO_4$ layer, one water molecule (called structural water) coordinates with the layer through the V-O

Figure 1. a) XRD pattern of VOPO₄·2H₂O. Inset: crystal structure of VOPO₄·2H₂O. b) CV curve of VOPO₄·2H₂O acquired at 0.5 mV s⁻¹. c) Galvanostatic charge and discharge curve of VOPO₄·2H₂O. d) XRD patterns, and ex situ XPS results of e) O 1s, f) V 2p, and g) Al 2p of VOPO₄·2H₂O cathode at different reaction states.

bond and the other (called crystal water) connects neighboring layers together via the weak hydrogen bonds.^[11c] The regularly arrayed discrete spots in the selected area electron diffraction (SAED) pattern demonstrate the top-quality single crystalline property of VOPO₄·2H₂O (Figure S1a, Supporting Information). The lattice distance extracted from the high resolution transmission electron microscopy (HRTEM) image of the selected area is about 0.31 nm, which is assigned to (200) crystal plane (Figure S1b, Supporting Information), matching well with the SAED pattern. Cyclic voltammetry (CV) measurement was implemented to investigate the fundamental redox reactions for VOPO₄·2H₂O (Figure 1b). A pair of distinct redox peaks appearing at high potential of 2.11/1.90 V can be observed in the initial cycle at the scan rate of 0.5 mV s⁻¹, followed by two pairs of peaks at 1.99/1.75 and 1.60/1.14 V, respectively, revealing the reversible redox reaction process of active sites. Figure S2 (Supporting Information) summarizes the discharge voltages of different kinds of materials, and the discharge potential of VOPO₄·2H₂O is higher than most of the reported AIBs cathode materials, indicating a great potential for achieving high energy density. To elucidate the aluminum storage/release mechanism during the redox reaction process, ex situ XRD and X-ray photoelectron spectroscopy (XPS) tests were conducted at different terminated voltage stages as illustrated in Figure 1c. As witnessed in the XRD patterns (Figure 1d), the (001) peak shifts to higher degree along with the decrease of the interlayer distance upon discharging, which is ascribed to the strong electrostatic interaction between the inserted Al³⁺ and the O atoms in the VOPO₄·2H₂O.^[14] During charging, the (001) peak reversibly returns back to the lower degree but not to that of the original electrode, indicative of the trapping of some Al³⁺ ions in the lattice.^[11e] No impurity diffraction peaks arise in the XRD results, suggestive of a typical intercalation/deintercalation mechanism for Al^{3+} storage in the VOPO₄·2H₂O. Besides, compared with the VOPO₄·2H₂O powder, the $VOPO_4 \cdot 2H_2O$ casted Mo foil cathode displays a right (001) peak shift (Figure S3, Supporting Information). This shift has also been observed in other literatures.^[15] Ex situ XPS spectra of O 1s illustrated in Figure 1e indicate that the O 1s spectrum of pristine VOPO₄·2H₂O owns two characteristic peaks at 531.0 and 532.3 eV, assigning to the binding energies of lattice O^{2-.[16]} For the V 2p spectrum of pristine $VOPO_4 \cdot 2H_2O$ (Figure 1f), two pairs of peaks located at 517.9/525.5 and 517.0/524.4 eV are pointed to V⁵⁺ and V⁴⁺, respectively.^[11d] By charging to 2.4 V (point A), a new peak of O⁻ appears at around 532.0 eV, indicating that O²⁻ is oxidized to O⁻ during the charging process.^[17] However, the V 2p spectrum remains almost unchanged after fully charged (point A). After fully discharged (point B), the new peak of O⁻ disappears, demonstrating that the change of chemical states of the oxygen is reversible. While for V 2p spectrum at this state (point B), a new peak of V³⁺ appears at the expense of the V⁵⁺ peak intensity, reflecting the reduction of V⁵⁺ due to the Al³⁺ insertion. Those observations uncover that the discharge capacity of the VOPO₄·2H₂O stems from the simultaneous redox reactions of oxygen and vanadium. At the charged state of 2nd cycle (point C), the O 1s and V 2p spectra keep similar to those of the 1st charged cathode, further confirming the high reversibility of oxygen and vanadium redox process. In addition, the XPS spectra of Al 2p confirm the insertion of Al^{3+} with the stronger Al signal at fully discharged state than that at fully charged state (Figure 1g). The Al signal still exists at the fully charged state, which is due to the trapped Al^{3+} in the $VOPO_4 \cdot 2H_2O$ lattice. Clearly, the introduction of oxygen redox process improves the average operating voltage and capacity of the AIBs, thus resulting in enhanced energy density.^[18]

To study the effect of water content on the Al³⁺ storage properties, a series of VOPO4 · nH2O with different water contents (n = 0, 1, 2) were prepared. The thermogravimetric analysis (TGA) curve (Figure 2a) demonstrates that the crystal water of VOPO₄·2H₂O escapes starting at around 50 °C followed by the complete loss at about 147 °C. Based on the loss temperature of crystal water, the anhydrous VOPO₄ was prepared through vacuum heating of VOPO₄·2H₂O at 150 °C for 2 h and the VOPO₄·H₂O was synthesized via heating VOPO₄·2H₂O slowly under vacuum followed by immediate stop at 75 °C (Figure S4, Supporting Information). The XRD patterns of VOPO₄ and VOPO₄·H₂O verify their successful preparation (Figure 2b). Specifically, the (001) peak located at 21.2° comes from VOPO₄,^[11e] while the peak at 14.1° (d = 0.63 nm) originates from VOPO₄·H₂O, which agrees well with the calculated interlayer distance for VOPO₄·H₂O (6.30 Å).^[19] The TGA curve provided in Figure S5 (Supporting Information) shows that the mass of VOPO₄ is almost unchanged within room temperature to 600 °C, confirming its successful dehydration. Figure 2c depicts the CV curves of VOPO₄·H₂O and VOPO₄ acquired at 0.5 mV s⁻¹. They display analogous shapes compared with that of VOPO₄·2H₂O (Figure 1b), demonstrating their similar Al³⁺ storage mechanism. Notably, the VOPO₄·H₂O exhibits highest redox peak currents, indicating its outstanding Al³⁺ storage ability. The galvanostatic discharge/charge experiments were conducted to further evaluate the electrochemical behaviors of VOPO4·2H2O, VOPO4·H2O, and VOPO4 electrodes.

Their cycling performances at 1.0 A g⁻¹ are compared in Figure 2d. Obviously, the VOPO₄·H₂O harvests the highest initial discharge capacity of 124.8 mAh g⁻¹ and the capacity can be maintained stably for a period and then falls gradually. For VOPO₄·2H₂O cathode, it delivers a discharge capacity increment and reaches the highest value of 134.9 mAh g⁻¹ at the 220th cycle. Since then, its capacity declines gradually. Meanwhile, the VOPO₄ always keeps stable discharge capacity with lowest value during the whole cycle process. We conducted a series of experiments to ascertain the reasons of the capacity fading and the results show that the active material dissolution, self-discharge phenomenon, and structure damage can be excluded (Figures S6-S8, Supporting Information). Hence, we speculate that the capacity decrease of VOPO₄·2H₂O and $VOPO_4 \cdot H_2O$ may be caused by the escape of H_2O molecules among the deep discharge/charge cycle as the H₂O molecules are beneficial for multivalent ions storage.^[10b,11c] The XRD pattern of the VOPO₄·2H₂O after cycles is shown in Figure S9 (Supporting Information). Compared with the original sample, the cycled VOPO₄ \cdot 2H₂O displays a discernible (001) peak right shift, which is due to the escape of the water or the irreversible insertion of Al^{3+,[20]} Therefore, the TGA was conducted to figure out the water contents before and after cycling. As displayed in Figure 2e, it can be clearly observed for the decreased water content in the cycled VOPO₄·2H₂O, corroborating the

www.advancedsciencenews.com

Figure 2. a) The TGA curves of VOPO₄·2H₂O. b) The XRD patterns and c) CV curves of VOPO₄·H₂O and VOPO₄. d) Cycling performance and Coulombic efficiency of VOPO₄·2H₂O, VOPO₄·H₂O, and VOPO₄ at 1.0 A g⁻¹. e) The TGA curves of pristine VOPO₄·2H₂O sample and cycled VOPO₄·2H₂O cathode. f) The FTIR curves of VOPO₄·2H₂O during cycling process. g) Schematic diagram of structural change of VOPO₄·2H₂O upon successive Al³⁺ insertion/deinsertion. Color modes: red sphere for V, yellow sphere for O, blue sphere for P, and purple sphere for H, respectively. h) Corresponding Al³⁺ insertion energies in these composites. i) The energy curves of VOPO₄·2H₂O, VOPO₄·H₂O, and VOPO₄·H₂O, and VOPO₄ during the Al³⁺ migration process. j) The curves of energy variation in water loss process of VOPO₄·2H₂O and VOPO₄·H₂O.

water escape during cycling. Additionally, the Fourier transform infrared spectroscopy (FTIR) further witnesses the water deinsertion judging via the weakened absorption band at around 1615 cm⁻¹ corresponding to the vibration of water molecules (Figure 2f). Based on the above analysis, Figure 2g generalizes the phase conversion process of VOPO₄·2H₂O

during repeated Al^{3+} insertion/deinsertion cycles, i.e., $VOPO_4 \cdot 2H_2O \rightarrow VOPO_4 \cdot H_2O \rightarrow VOPO_4$ due to the gradual water loss during cycling.

Given that the performances of these electrodes can be summarized as the following order: $VOPO_4 \cdot H_2O > VOPO_4 \cdot 2H_2O$ > $VOPO_4$, we infer that the water content plays a crucial role

NANO . MICRO

www.small-journal.com

NANO · MICRO

www.small-iournal.com

in determining the electrochemical properties. In order to understand the relationship between the water content and the electrochemical performance of $VOPO_4 \cdot nH_2O$ (*n* = 0, 1, 2), DFT calculations of the Al³⁺ insertion energies on these compounds were first performed. Figure S10a-c (Supporting Information) show the aluminum ion adsorption models for the VOPO₄·nH₂O (n = 0, 1, 2) cathodes. As presented in Figure 2h, the Al³⁺ insertion energy on the hydrates of $VOPO_4 \cdot 2H_2O$ (-8.97 eV) and $VOPO_4 \cdot H_2O$ (-15.56 eV) is lower than that on the anhydrous $VOPO_4$ (-5.20 eV), suggesting that the water molecules can facilitate Al³⁺ insertion process originating from its effective Al³⁺ charge shielding role.^[21] Notably, although the VOPO4·H2O owns less water molecules than $VOPO_4 \cdot 2H_2O_2$, it exhibits more negative Al³⁺ insertion energy, which can be attributed to the decreased steric hindrance of $VOPO_4 \cdot H_2O$ because of the removal of crystal water. The Al³⁺ diffusion in these compounds was simulated using the CI-NEB method. The possible Al³⁺ migration paths in VOPO₄·2H₂O, VOPO₄·H₂O, and VOPO₄ are given in Figure S10d-f (Supporting Information). In comparison with VOPO₄·2H₂O (1.766 eV) and VOPO₄ (2.528 eV), the VOPO₄ \cdot H₂O possesses the lowest Al³⁺ diffusion barrier (0.884 eV, Figure 2i). The theoretical calculations rationally confirm the advantages of VOPO₄·H₂O in regard of Al³⁺ insertion energy and Al³⁺ diffusion energy barrier, and account well for its improved aluminum-storage behaviors toward AIBs. We further calculated the water-holding ability of these compounds. As illustrated in Figure 2j, the VOPO₄·H₂O displays difficult water migration confirmed by its higher water migration energy (2.03 eV) compared with that of VOPO₄·2H₂O (1.66 eV), demonstrating the higher water-holding ability of VOPO₄·H₂O. These results explain well the observations in Figure 2d of the relatively stable cycle performance of VOPO₄·H₂O than VOPO₄·2H₂O in the initial ≈ 220 cycles, during which the capacity of VOPO₄ · 2H₂O gradually increases. The capacity increment could be attributed to the dehydration process of VOPO₄·2H₂O, resulting in the formation of VOPO₄·H₂O. Despite of the stronger waterpreserving capability of $VOPO_4 \cdot H_2O$, it inevitably suffers from water escape witnessed by the capacity decay after ≈ 300 cycles.

2.2. Synthesis, Characterization, and Electrochemical Tests of VOPO_4 $\cdot nH_2O@MXene$

In order to obtain water stable VOPO₄·H₂O, the MXene aided synthesis of VOPO₄·nH₂O with various water contents was conducted and the preparation process is illustrated in **Figure 3**a. Specifically, MXene nanosheets were added dropwise into the bulk VOPO₄·2H₂O-isopropanol suspension under mild mechanical stirring. Immediately, the multilayered VOPO₄·2H₂O were effectively exfoliated into few-layered VOPO₄·nH₂O manosheets by the "dragging effect" of MXene nanosheets, leading to the novel ultrathin heterostructured VOPO₄·nH₂O@MXene composite. We synthesized a series of the composites with different MXene contents, which are determined by ICP-OES analysis, accounting for 10%, 12%, 16%, and 48%, respectively (Table S1, Supporting Information). And these composites are denoted as VOPO₄·nH₂O@MXene-10, VOPO₄·nH₂O@MXene-12, VOPO₄·nH₂O@MXene-16, and

VOPO₄·nH₂O@MXene-48, respectively. The bulk VOPO₄·2H₂O exhibits square layers heavily stacked morphology with lateral size ranging from several to dozens of micrometers before stripping (Figure 3b). Besides, the SEM image of the MXene nanosheets which are ultrasonic exfoliated from the acid etched Ti₃AlC₂ display loose and flexible layered structure with large lateral size (Figure S11a, Supporting Information). The interplanar distance of MXene is 1.26 nm revealed by XRD pattern, which presents the characteristic peak (002) at ≈7.0° (Figure S11b, Supporting Information). Notably, the VOPO₄·nH₂O@MXene exhibits ultrathin layered morphology after hybridization (Figure 3c, using VOPO₄·nH₂O@MXene-12 as an example), revealing the tight contact between VOPO₄·nH₂O and MXene, thereby leading to effective face-to-face electrical connections. The atomic force microscopy (AFM) characterization also proves the formation of 2D/2D interfacial interaction with the average layered thickness of around 4 nm (Figure 3d). The nearly transparent of the transmission electron microscope (TEM) image (Figure 3e) further uncovers the ultrathin property of the VOPO₄·nH₂O@MXene-12. The HRTEM image (Figure 3f) gives the MXene layer edges distinctly with a distance of ≈2.0 nm between individual layers higher than the calculated interlayer distance of pure MXene (1.26 nm), which could be ascribed to the growth of VOPO₄ nanosheets.^[22] The SAED pattern exhibits diffraction dots of both VOPO4 and MXene nanosheets, indicative of the hybridization of MXene and VOPO4·nH2O (Figure 3g). The scanning transmission electron microscopy (STEM) image with energy-dispersive X-ray spectroscopy (EDS) mapping in Figure 3h vividly showcase the homogeneous distribution of V, O, P, Ti, and C, corroborating the successful formation of VOPO₄·nH₂O@MXene heterostructure. Besides, the VOPO₄·nH₂O@MXene-10 (Figure S12, Supporting Information), VOPO₄·nH₂O@MXene-16 (Figure S13, Supporting Information), and VOPO4 · nH2O@MXene-48 (Figure S14, Supporting Information) also show ultrathin layered structure with uniform distributed elements (V, O, P, Ti, C), demonstrating the universality of this developed strategy towards fabrication of ultrathin VOPO₄·nH₂O@MXene heterostructure.

The XRD patterns of VOPO₄·nH₂O@MXene hybrids are displayed in Figure 4a. Obviously, the (001) peak of $\text{VOPO}_4 \cdot n\text{H}_2\text{O}@MXene$ with 10 wt% MXene shifts from 11.9° of pure VOPO₄·2H₂O to 13.6°, along with the decrease of interlayer distance from 0.74 to 0.65 nm, suggesting the removal of water molecules from VOPO₄·2H₂O interlayer with the dragging effect of MXene under stirring, which can effectively promote the hydrogen bonds fracture in VOPO₄·2H₂O. Interestingly, this (001) peak moves toward higher degree with the increase of the MXene amount, revealing that the VOPO₄·nH₂O with different water contents can be synthesized controllably through simply adjusting MXene amounts. Most notably, the (001) peak position of $VOPO_4 \cdot nH_2O@MXene-12$ (14.0°) is nearest to that of $VOPO_4 \cdot H_2O$ (14.1°) compared with other composites, indicating the successful synthesis of VOPO₄·H₂O@MXene. It is well known that the VOPO4 H2O possessing the (001) peak located at around 14.1° is hard to obtain through common ultrasonic stripping, which usually leads to low stripping degree, validated by the minor (001) diffraction peak right shift (only $\approx 1^{\circ}$).^[23] Therefore, this MXene aided stripping strategy provides a shortcut for the synthesis of $VOPO_4 \cdot H_2O$.

Figure 3. a) Schematic illustration for the fabrication of VOPO₄·nH₂O@MXene composite. b) The SEM image of bulk VOPO₄·2H₂O (inset: the enlarged SEM image). c) SEM and d) AFM images of VOPO₄·nH₂O@MXene-12 (inset: the typical height curve of the nanosheets). e) TEM and f) HRTEM images of VOPO₄·nH₂O@MXene-12. g) The SAED image of VOPO₄·nH₂O@MXene-12. h) STEM-EDX elemental mapping images for VOPO₄·nH₂O@MXene-12.

The FTIR spectra of the VOPO₄·2H₂O and VOPO₄·H₂O@ MXene are presented in Figure 4b. The peaks at 1089, 971, 682, and 571 cm⁻¹ are assigned to P–O extension vibration, V–O (of V=O)/V=O stretching vibration modes, V–O–P, and O–P–O bending vibrations of VOPO₄·2H₂O, respectively.^[11d,24] Upon hybridization with MXene, the P–O shifts to lower wavenumber, which can be ascribed to the partial reduction of V⁵⁺ to V⁴⁺, resulting in the change of the P–O bond in the PO₄ group.^[11d] Besides, the bending vibration peaks of interlayer water of VOPO₄·2H₂O and VOPO₄·H₂O@MXene appear at 1613 and 1629 cm⁻¹, respectively. The blueshift of the latter suggests that the interlayer water molecules are bound solidly in the VOPO₄·H₂O@MXene, leading to the improved water stability.^[25] The TGA curves further confirm the water stability of the composite. As presented in Figure 4c, compared with the VOPO₄·2H₂O, the incorporation of MXene increases the dehydration temperature of VOPO₄·H₂O@MXene. The similar water loss hysteresis phenomena of VOPO₄·nH₂O@MXene-10, VOPO₄·nH₂O@MXene-16, and VOPO₄·nH₂O@MXene-48 are displayed in Figure S15 (Supporting Information). Besides, the VOPO₄·H₂O@MXene also displays superb insulation from the environmental water, which is witnessed by its XRD pattern

NANO · MICRO

www.small-journal.com

Figure 4. a) The XRD patterns of VOPO₄·nH₂O@MXene-10, VOPO₄·nH₂O@MXene-12 (denoted as VOPO₄·H₂O@MXene), VOPO₄·nH₂O@MXene-16, and VOPO₄·hH₂O@MXene, water characteristic peak). c) The TGA curves. d) The FTIR spectra of VOPO₄·H₂O@MXene before and after exposure to air. The comparison of high-resolution XPS of e) V 2p, f) O 1s for VOPO₄·H₂O@MXene and VOPO₄·2H₂O, and g) Ti 2p for VOPO₄·H₂O@MXene and MXene. h) The calculated V-O_{water} bond length of oxygen deficient and perfect VOPO₄·H₂O.

with ignored (001) peak position shift after exposure to air for 10 days (Figure 4d). However, the VOPO₄·H₂O displays strong water adsorption ability, which can convert to VOPO₄·2H₂O in 2 min once it was exposed to air (Figure S16, Supporting Information). The excellent antiself-discharge ability and high chemical stability endow the VOPO4·H2O@MXene with significant advantages for practical applications. Furthermore, we conducted the XPS measurement to analyze the electronic structure of VOPO₄·H₂O@MXene. The full survey XPS spectrum of VOPO₄·H₂O@MXene shown in Figure S17 (Supporting Information) reveals the existence of V, O, P, Ti, C, and F. Figure 4e exhibits the corresponding high-resolution XPS (HR-XPS) spectra of V 2p for VOPO₄·H₂O@MXene and VOPO₄·2H₂O, respectively. For VOPO₄ \cdot 2H₂O, the characteristic peaks at 518.3 and 525.8 eV originate from V $2p_{3/2}$ and V $2p_{1/2}$ of V $^{5+}\!\!$, and the peaks at 517.0 and 524.4 eV are pointed to V 2p_{3/2} and V 2p_{1/2} of V⁴⁺, respectively. The amount of V⁴⁺ is low in this sample and most of V species exist as V⁵⁺. While for VOPO₄·H₂O@MXene composite, the amount of V4+ significantly increases, which could be attributed to the introduction of oxygen vacancies during MXene aided stripping process.^[26] Moreover, the binding

energies of V 2p for VOPO₄·H₂O@MXene hybrid exhibit slight negative shifts, while those of Ti 2p for VOPO₄·H₂O@MXene show positive shifts compared with the pure MXene (Figure 4g). These observations support the electrons transfer from conductive MXene to $VOPO_4 \cdot H_2O_4^{[27]}$ meaning a strong coupling between VOPO₄·H₂O and MXene interfaces, which is directly confirmed by the appearance of Ti-O-V in the O 1s HR-XPS spectrum of VOPO₄·H₂O@MXene in comparison with that of bare VOPO₄·2H₂O (Figure 4f).^[28] Additionally, the P 2p HR-XPS spectrum is given in Figure S18 (Supporting Information). In order to explore the reason behind the excellent water stability of VOPO4·H2O@MXene, DFT calculation was carried out to compare the V-Owater bond length of oxygen deficient and perfect $VOPO_4 \cdot H_2O$, which is the quantitative index of the interaction between water molecules and VOPO4. Notably, the V-O_{water} bond length for the oxygen deficient $VOPO_4 \cdot H_2O$ is 2.07 Å, which is 0.34 Å shorter than that for the perfect one (Figure 4h). The short bond length is indicative of strong bonding interaction between the water molecules and the VOPO₄, which can effectively resist water escape originating from the V-O_{water} bonds breaking during repeated Al³⁺

NANO . MICRO

www.small-iournal.com

Figure 5. a) Cross-section TEM and b,c) HRTEM images of VOPO₄·H₂O@MXene. d) STEM-EDX elemental mapping images for VOPO₄·H₂O@MXene. e) Schematic illustration of the different restacking and interlayer distances of bulk VOPO₄·H₂O and VOPO₄·H₂O@MXene.

insertion/deinsertion process and is beneficial to the cycling stability of the composites.

The cross-section TEM was further conducted to acquire more detailed morphology information of VOPO₄·H₂O@ MXene. The TEM image of VOPO4·H2O@MXene exhibits uniform flexible layered structure with ultrathin feature (Figure 5a). The corresponding HRTEM images (Figure 5b,c) reveal that these layers are typical sandwich structures, of which the ultrathin MXene nanosheets are sandwiched between the VOPO₄·H₂O nanosheets locating on both sides. Notably, the scanning transmission electron microscopy (STEM) image with energy-dispersive X-ray spectroscopy (EDS) mappings in Figure 5d; and Figure S19 (Supporting Information) present that Ti is concentrated in the central core and V and P elements are mainly distributed in the periphery, vividly corroborating the sandwich structure of VOPO₄·nH₂O@MXene. To sum up, the thick bulk VOPO₄·2H₂O (≈600 nm) was effectively stripped into ultrathin VOPO₄·H₂O (≈6 nm) with the aid of MXene,

resulting in typical sandwich structure of two MXene layers confined between the several VOPO₄ \cdot H₂O nanosheets, further confirming the tight interaction between the MXene and VOPO₄ \cdot H₂O (Figure 5e).

To evaluate the electrochemical performance of the VOPO₄·H₂O@MXene, CV curves were first recorded (**Figure 6a**). There are four pairs of reversible redox peaks at 1.95/2.14, 1.77/1.95, 1.47/1.80, and 1.18/1.51 V, respectively, which can be observed more clearly from the CV curves obtained at different scan rates (Figure S20, Supporting Information). The presence of multiple peaks demonstrates stepwise and multiple electrons transfer during the Al³⁺insertion/deinsertion process. To further reveal the effect of the MXene amounts on the electrochemical performance, the comparison of the long-term cycling behaviors of these VOPO₄·H₂O@MXene composites at the current density of 1.0 A g⁻¹ in a potential window of 0.6–2.4 V is shown in Figure 6b. Remarkably, the VOPO₄·H₂O@MXene exhibits the most outstanding cycling

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

Figure 6. a) CV curves of VOPO₄·H₂O@MXene cathode at 0.2 mV s⁻¹. b) Cycling performance of different VOPO₄·nH₂O@MXene cathodes at a current density of 1.0 A g⁻¹. c) The initial three galvanostatic discharge/charge curves of VOPO₄·H₂O@MXene at 1.0 A g⁻¹. d) The rate performance and e) galvanostatic discharge/charge voltage profiles of VOPO₄·H₂O@MXene cathode at different current densities. f) OCV and g) capacity retention tests of VOPO₄·H₂O@MXene cathode (inset: digital images of VOPO₄·H₂O@MXene soaked in ionic liquid electrolyte (I) before and (II) after 2 months). h) Electrochemical performance comparison of VOPO₄·H₂O@MXene with the recently reported advanced AIBs cathodes. i) Ragone plots of VOPO₄·H₂O@MXene and other representative AIBs cathodes.

performance, which affords an initial discharge capacity of 282.5 mAh g⁻¹ and undergoes a moderately augmenting capacity up to 416.6 mAh g⁻¹ at the 349th cycle and maintains the capacity of 374.8 mAh g⁻¹ over 2000 cycles. It also delivers high

reversible Al³⁺ storage property with the average Coulombic efficiency of $\approx 100\%$ among the whole cycles. Clearly, this is due to the suitable water content in this composite. The gradual discharge capacity increment could be ascribed to the exfoliation

of some thick nanosheets during the continuous intercalation/ deintercalation of Al³⁺ ions, providing more active sites for Al³⁺ ions storage as well as shortening ions diffusion length.^[29] The similar phenomenon was observed in some previous reported 2D cathode materials for AIBs.^[30] The structural evolution is confirmed by the XRD pattern of VOPO4·H2O@MXene after cycling. As displayed in Figure S21 (Supporting Information), the (001) characteristic peak for VOPO₄·H₂O disappears after repeated Al³⁺ ions intercalation/deintercalation. This peak response might be related to the exfoliation of the nanosheets during cycling, which corresponds well with the increased capacity. Moreover, the XPS spectra of the cycled VOPO₄·H₂O@MXene remain almost unchanged (Figure S22, Supporting Information), which proves the good stability of the electrode during the cycling process. The corresponding galvanostatic charge/discharge curves of VOPO4·H2O@MXene given in Figure 6c present desirable high discharge/charge potentials of around 1.8/2.0 V, indicative of potential high energy density of the VOPO4·H2O@MXene. In addition, the discharge/charge curves can be well maintained, confirming its superior stability. The galvanostatic discharge/charge curves $VOPO_4 \cdot nH_2O@MXene-10$, $VOPO_4 \cdot nH_2O@MXene-16$, of and VOPO4·nH2O@MXene-48 provided in Figure S23 (Supporting Information) showcase similar voltage plateaus with VOPO₄·H₂O@MXene. Besides excellent cycle life, a fast Al³⁺ ions storage/release is another requirement of the promising AIBs. Figure 6d displays the galvanostatic rate performance of the VOPO₄·H₂O@MXene cathode. It shows exceptionally high rate capability, with average reversible capacities of 355.7, 336.4, 329.8, 251.6, 200.9, 164.2, 133.4, 110.8, and 94.4 mAh g⁻¹ at applied current densities of 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 A g^{-1} , respectively. Noting that the observed rate capability is comparable, or superior, to the state-of-the-art reported AIBs cathodes previously (Figure S24, Supporting Information).^[30a,31] The good rate performance could be credited to the function of VOPO₄·H₂O with advanced Al³⁺ storage properties along with the good electronic conductivity provided by the MXene. As shown in Figure S25 (Supporting Information), the density of states (DOS) for VOPO₄ \cdot H₂O@MXene and $VOPO_4 \cdot H_2O$ was calculated, as a major determining factor of the electronic conductivity of inorganic materials. As expected, the VOPO₄·H₂O@MXene shows the stronger metallic character because of the continuous electronic state at Fermi level, and enhanced DOS intensity compared to that of $VOPO_4 \cdot H_2O_1$, suggesting that the incorporated MXene is beneficial for modulating and ameliorating the conductivity.^[32] When the current density is reverted to 0.5 Ag^{-1} , the VOPO₄·H₂O@MXene affords a higher discharge capacity of 404.9 mAhg⁻¹. This phenomenon is attributed to gradual activation of the cathode and the exposure of active sites for Al³⁺ intercalation during the rate cycling. Somewhat surprisingly, after the high rate testing, the cathode still delivers steady capacity of 404.5 mAh g⁻¹ at 0.5 A g⁻¹ after 420 cycles (Figure 6d). Besides, the corresponding discharge/charge profiles at different current rates given in Figure 6e display discernible discharge/charge plateaus. To further prove the superiority of the VOPO₄·H₂O@MXene cathode, the long-term cyclability at a high current density of 2 A g⁻¹ is checked and manifested in Figure S26 (Supporting Information). The VOPO₄·H₂O@MXene achieves a discharge

capacity of 130.3 mAh g⁻¹ for the 1st cycle and affords the capacity of 214.1 mAh g⁻¹ even after 2000 cycles, confirming its extraordinary cycling stability. The excellent cycling results offer solid evidence for the high water-holding ability of $VOPO_4 \cdot H_2O@MXene$, which ensures smooth AI^{3+} ions diffusion kinetics and high structural stability. To further verify the intrinsic advanced characters of the VOPO₄·H₂O@MXene, the self-discharging investigation and static electrolyte soaking test were conducted. For the self-discharging test, the OCV value of the VOPO4·H2O@MXene keeps consistent within 15 days (Figure 6f). Besides, we placed the fully charged VOPO₄·H₂O@MXene battery at OCV for specific time (0.5-10 days), and then the battery was fully discharged at 1.0 A g⁻¹. Remarkably, instead of falling, the discharge capacity of VOPO4·H2O@MXene increased after 10 days, demonstrating its excellent antiself-discharge ability (Figure 6g). Additionally, the VOPO4·H2O@MXene remains unchanged even after 60 days' immersion treatment, indicating its outstanding chemical stability in the highly acidic electrolyte (inset in Figure 6f). Moreover, the TGA test was further conducted to check the water stability of VOPO4·H2O@MXene during cycling process (Figure S27, Supporting Information). The cycled cathode shows a similar weight loss trend compared with bare VOPO₄·H₂O@MXene, except for larger weight loss at high temperature, which can be ascribed to the PVDF decomposition.^[33] The calculated water content (after subtracting the PDVF content) in cycled VOPO₄·H₂O@MXene is around 17%, which is close to that in the pristine one (18%), confirming its high water stability originating from the fixation effect of MXene. To the best of our knowledge, such high-level performances of VOPO₄·H₂O@MXene, including the large reversible discharge capacities obtained at high current densities and elevated operating voltage, are among the best one in the reported cathode materials for AIBs (Figure 6h; and Table S2, Supporting Information).^[7,31a,b,d,i,34] The corresponding Ragone plot in Figure 6i shows that VOPO4·H2O@MXene stands out in terms of both energy density (533 Wh kg⁻¹) and power density (5792 W kg⁻¹) calculated from the corrected capacities (Figures S28 and S29, Supporting Information), owing to its high discharge voltage plateau and rate capability among these previously reported AIBs cathodes.^[31a-d,h,34c,d,35] A closer look of the electrode kinetics is realized by CV

A closer look of the electrode kinetics is realized by CV measurements performed at different sweep rates. As exhibited in Figure S30a (Supporting Information), the redox peaks in CV curves gradually expand with the increasing sweep rates. The cathodic current peaks can be observed at all sweep rates, while the high-potential anodic current peaks tend to be blurry because of the increased Ohmic losses at high sweep rates. To discern the charge storage process of VOPO₄·H₂O@MXene, the peak currents and their corresponding sweep rates should obey the power law expression and the exponent can be determined by fitting the cathodic and anodic current peaks at around 1.7/1.8 and 1.9 V, respectively. The power law relationship is described by

$$i = av^{b} \tag{1}$$

where *i* represents the measured peak current, v is the scan rate, and *a* and *b* are fitting parameters. The *b* value can be used

ADVANCED SCIENCE NEWS _____ www.advancedsciencenews.com

to identify between diffusion-controlled and surface-controlled contributions, i.e., b = 0.5 is regarded a pure Faradaic process and b = 1 is a pure capacitive process.^[36] The calculated b values shown in Figure S30b (Supporting Information) for these cathode and anode peaks are 0.87 (peak I), 1.10 (peak II), 0.75 (peak III), respectively, suggestive of a capacitance-controlled process, which facilitates AI^{3+} diffusion kinetics and enables the high rate capability of VOPO₄·H₂O@MXene. Such pseudocapacitive storage endows the cathode with high energy and power densities.

3. Conclusions

In summary, we creatively raise and confirm the positive role of the water molecules for enhancing the AIBs performance employing VOPO₄·nH₂O (n = 0, 1, 2) as research models. Both of the oxygen anion and vanadium cation participate in the charge compensation when the Al³⁺ ions intercalate into the hydrate. Benefiting from the Al³⁺ charge shielding role of water molecules and smaller steric hindrance, the VOPO₄·H₂O delivers the highest reversible capacity and fastest Al³⁺ migration compared with VOPO4 and VOPO4 · 2H2O. Additionally, we also attest that the main reason for the cycling instability for the hydrate is the irreversible water loss. Consequently, a novel strategy to obtain VOPO4·H2O with high water stability was developed through a simple stirring of VOPO₄·2H₂O and MXene. The VOPO₄·H₂O@MXene delivers high reversible capacity (329.6 mAh g⁻¹ at 1 A g⁻¹), long and high discharge plateau (≈1.8 V), high energy density, and encouraging cycling life (2000 cycles at 1 A g⁻¹ and 2000 cycles at 2 A g⁻¹ without capacity loss). This finding not only provides novel alternative of the high-performance cathode materials in AIBs, but also presents a new insight into cathode design.

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51971065), and the Innovation Program of Shanghai Municipal Education Commission (No. 2019-01-07-00-07). The authors would like to thank SCI-GO (www.sci-go.com) for the XPS analysis.

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available in the supplementary material of this article.

Keywords

aluminum ion batteries, high discharge potential, high water stability, VOPO_4·H_2O, VOPO_4·H_2O@MXene

Received: December 7, 2022 Revised: January 29, 2023 Published online: February 12, 2023

- [1] J. W. Choi, D. Aurbach, Nat. Rev. Mater. 2016, 1, 16013.
- a) Y. Liang, H. Dong, D. Aurbach, Y. Yao, Nat. Energy 2020, 5, 646;
 b) A. Ponrouch, J. Bitenc, R. Dominko, N. Lindahl, P. Johansson, M. R. Palacin, Energy Storage Mater. 2019, 20, 253.
- [3] a) S. K. Das, Angew. Chem., Int. Ed. 2018, 57, 16606; b) A. L. Jadhav,
 J. H. Xu, R. J. Messinger, ACS Energy Lett. 2020, 5, 2842.
- [4] M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, H. Dai, *Nature* 2015, *520*, 324.
- [5] W. Kaveevivitchai, A. J. Jacobson, Chem. Mater. 2016, 28, 4593.
- [6] M. Chiku, H. Takeda, S. Matsumura, E. Higuchi, H. Inoue, ACS Appl. Mater. Interfaces 2015, 7, 24385.
- [7] J. Wei, W. Chen, D. Chen, K. Yang, J. Electrochem. Soc. 2017, 164, A2304.
- [8] S. Wang, K. V. Kravchyk, S. Pigeot-Rémy, W. Tang, F. Krumeich, M. Wörle, M. I. Bodnarchuk, S. Cassaignon, O. Durupthy, S. Zhao, C. Sanchez, M. V. Kovalenko, ACS Appl. Nano Mater. 2019, 2, 6428.
- [9] C. Legein, B. J. Morgan, F. Fayon, T. Koketsu, J. Ma, M. Body, V. Sarou-Kanian, X.-K. Wei, M. Heggen, O. J. Borkiewicz, P. Strasser, D. Dambournet, Angew. Chem., Int. Ed. 2020, 59, 19247.
- a) E. Levi, Y. Gofer, D. Aurbach, Chem. Mater. 2010, 22, 860;
 b) P. Novák, W. Scheifele, F. Joho, O. Haas, J. Electrochem. Soc. 1995, 142, 2544.
- [11] a) B. M. Azmi, T. Ishihara, H. Nishiguchi, Y. Takita, J. Power Sources 2003, 119–121, 273; b) G. He, W. H. Kan, A. Manthiram, Chem. Mater. 2016, 28, 682; c) J. Hyoung, J. W. Heo, M. S. Chae, S.-T. Hong, ChemSusChem 2019, 12, 1069; d) V. Verma, S. Kumar, W. Manalastas, J. Zhao, R. Chua, S. Meng, P. Kidkhunthod, M. Srinivasan, ACS Appl. Energy Mater. 2019, 2, 8667; e) X. Ji, J. Chen, F. Wang, W. Sun, Y. Ruan, L. Miao, J. Jiang, C. Wang, Nano Lett. 2018, 18, 6441; f) P. Xiong, F. Zhang, X. Zhang, S. Wang, H. Liu, B. Sun, J. Zhang, Y. Sun, R. Ma, Y. Bando, C. Zhou, Z. Liu, T. Sasaki, G. Wang, Nat. Commun. 2020, 11, 3297.
- [12] F. Wang, W. Sun, Z. Shadike, E. Hu, X. Ji, T. Gao, X.-Q. Yang, K. Xu, C. Wang, Angew. Chem., Int. Ed. 2018, 57, 11978.
- [13] a) J. Zheng, S. Ju, L. Yao, G. Xia, X. Yu, J. Power Sources 2021, 511, 230450; b) H. Shao, K. Xu, Y.-C. Wu, A. Iadecola, L. Liu, H. Ma, L. Qu, E. Raymundo-Piñero, J. Zhu, Z. Lin, P.-L. Taberna, P. Simon, ACS Energy Lett. 2020, 5, 2873; c) P. Yan, L. Ji, X. Liu, Q. Guan, J. Guo, Y. Shen, H. Zhang, W. Wei, X. Cui, Q. Xu, Nano Energy 2021, 86, 106139.
- [14] M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K.-S. Lee, Y.-K. Sun, J. Kim, *Chem. Mater.* **2017**, *29*, 1684.
- [15] a) J. Wang, S. Tan, F. Xiong, R. Yu, P. Wu, L. Cui, Q. An, Chem. Commun. 2020, 56, 3805; b) Y. Xu, X. Wu, S. K. Sandstrom, J. J. Hong, H. Jiang, X. Chen, X. Ji, Adv. Mater. 2021, 33, 2105234.
- [16] K. Li, Y. Li, Z. Xie, X. Tan, X. Zhang, R. Liu, Y.-F. Song, S. Zhang, ACS Appl. Nano Mater. 2021, 4, 2503.
- [17] F. Wan, Y. Zhang, L. Zhang, D. Liu, C. Wang, L. Song, Z. Niu, J. Chen, Angew. Chem., Int. Ed. 2019, 58, 7062.
- [18] S. Saha, G. Assat, M. T. Sougrati, D. Foix, H. Li, J. Vergnet, S. Turi, Y. Ha, W. Yang, J. Cabana, G. Rousse, A. M. Abakumov, J.-M. Tarascon, *Nat. Energy* **2019**, *4*, 977.

ADVANCED SCIENCE NEWS

www.advancedsciencenews.com

- [19] R. Gautier, N. Audebrand, E. Furet, R. Gautier, E. L. Fur, Inorg. Chem. 2011, 50, 4378.
- [20] J. Wang, J. Wang, Y. Jiang, F. Xiong, S. Tan, F. Qiao, J. Chen, Q. An, L. Mai, Adv. Funct. Mater. 2022, 32, 2113030.
- [21] F. Wu, H. Yang, Y. Bai, C. Wu, Adv. Mater. 2019, 31, 1806510.
- [22] K. Nasrin, V. Sudharshan, K. Subramani, M. Karnan, M. Sathish, Small 2022, 18, 2106051.
- [23] a) Y. Zhu, L. Peng, D. Chen, G. Yu, *Nano Lett.* 2016, *16*, 742;
 b) H. Li, L. Peng, Y. Zhu, D. Chen, X. Zhang, G. Yu, *Energy Environ. Sci.* 2016, *9*, 3399.
- [24] L. Hu, Z. Wu, C. Lu, F. Ye, Q. Liu, Z. Sun, Energy Environ. Sci. 2021, 14, 4095.
- [25] J. Xie, Z. Liang, Y.-C. Lu, Nat. Mater. 2020, 19, 1006.
- [26] Z. Wu, C. Lu, F. Ye, L. Zhang, L. Jiang, Q. Liu, H. Dong, Z. Sun, L. Hu, Adv. Funct. Mater. 2021, 31, 2106816.
- [27] a) H. Wang, K. Xie, Y. You, Q. Hou, K. Zhang, N. Li, W. Yu, K. P. Loh, C. Shen, B. Wei, *Adv. Energy Mater.* **2019**, *9*, 1901806; b) Q. Pan, Q. Zhang, F. Zheng, Y. Liu, Y. Li, X. Ou, X. Xiong, C. Yang, M. Liu, *ACS Nano* **2018**, *12*, 12578.
- [28] H. Liu, P. He, J. Cao, T. Duan, Q. Kong, W. Yao, J. Power Sources 2022, 521, 230946.
- [29] J. Tang, X. Huang, T. Lin, T. Qiu, H. Huang, X. Zhu, Q. Gu, B. Luo, L. Wang, *Energy Storage Mater.* **2020**, *26*, 550.
- [30] a) L. Xing, K. A. Owusu, X. Liu, J. Meng, K. Wang, Q. An, L. Mai, Nano Energy 2021, 79, 105384; b) S. Guo, H. Yang, M. Liu, X. Feng, H. Xu, Y. Bai, C. Wu, ACS Appl. Energy Mater. 2021, 4, 7064; c) X. Huo, B. Zhang, J. Li, X. Wang, T. Qin, Y. Zhang, F. Kang, ACS Appl. Mater. Interfaces 2021, 13, 11822; d) X. Feng, J. Li, Y. Ma, C. Yang, S. Zhang, J. Li, C. An, ACS Appl. Energy Mater. 2021, 4, 1575.
- [31] a) H. Lu, Y. Li, Y. Zheng, C. Dong, Y. Li, F. Meng, Y. Wang, C. Teng, X. Wang, D. Zhou, G. Xue, *Mater. Today Energy* **2022**, *24*, 100940;

b) H. Zhang, Y. Liu, L. Yang, L. Zhao, X. Dong, H. Wang, Y. Li, T. Sun, Q. Li, H. Li, Energy Storage Mater. 2022, 47, 336; c) H. Hong, J. Liu, H. Huang, C. Atangana Etogo, X. Yang, B. Guan, L. Zhang, J. Am. Chem. Soc. 2019, 141, 14764; d) G. Wang, E. Dmitrieva, B. Kohn, U. Scheler, Y. Liu, V. Tkachova, L. Yang, Y. Fu, J. Ma, P. Zhang, F. Wang, J. Ge, X. Feng, Angew. Chem., Int. Ed. 2022, 61, e202116194; e) D.-J. Yoo, M. Heeney, F. Glöcklhofer, J. W. Choi, Nat. Commun. 2021, 12, 2386; f) X. Peng, Y. Xie, A. Baktash, J. Tang, T. Lin, X. Huang, Y. Hu, Z. Jia, D. J. Searles, Y. Yamauchi, L. Wang, B. Luo, Angew. Chem., Int. Ed. 2022, 61, e20203646; g) Z. Zhao, Z. Hu, Q. Li, H. Li, X. Zhang, Y. Zhuang, F. Wang, G. Yu, Nano Today 2020, 32, 100870; h) X. Li, W. Lv, G. Wu, G. Fu, W. Zhang, Z. Li, Chem. Eng. J. 2021, 426, 131899; i) C. Li, S. Dong, P. Wang, C. Wang, L. Yin, Adv. Energy Mater. 2019, 9, 1902352.

NANO - MICRO

- [32] S. Das, P. Bhauriyal, B. Pathak, J. Phys. Chem. C 2021, 125, 49.
- [33] S. H. Siyal, S. S. A. Shah, T. Najam, M. S. Javed, M. Imran, J.-L. Lan, ACS Appl. Energy Mater. 2021, 4, 8604.
- [34] a) S. Lu, M. Wang, F. Guo, J. Tu, A. Lv, Y. Chen, S. Jiao, Chem. Eng. J. 2020, 389, 124370; b) L. Yao, S. Ju, T. Xu, X. Yu, ACS Nano 2021, 15, 13662; c) Y. Du, B. Zhang, W. Zhang, H. Jin, J. Qin, J. Wan, J. Zhang, G. Chen, Energy Storage Mater. 2021, 38, 231; d) X. Huo, J. Zhong, Z. Yang, J. Feng, J. Li, F. Kang, ACS Appl. Mater. Interfaces 2021, 13, 55112; e) J. Zhang, L. Zhang, Y. Zhao, J. Meng, B. Wen, K. M. Muttaqi, M. R. Islam, Q. Cai, S. Zhang, Adv. Energy Mater. 2022, 12, 2200959; f) L. Yang, J. Liu, Y. Liu, Y. Li, Y. Xu, F. Zuo, Y. Wu, Q. Li, H. Li, Chem. Commun. 2022, 58, 10981; g) T. Li, H. Hu, T. Cai, X. Liu, Y. Wang, L. Wang, Y. Zhang, W. Xing, Z. Yan, Nanoscale 2022, 14, 10566.
- [35] Y. Hu, B. Luo, D. Ye, X. Zhu, M. Lyu, L. Wang, Adv. Mater. 2017, 29, 1606132.
- [36] H. Lindström, S. Södergren, A. Solbrand, H. Rensmo, J. Hjelm, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B 1997, 101, 7717.